
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3373362/publications.pdf Version: 2024-02-01

FRIEDRICH CÃ

#	Article	IF	CITATIONS
1	Molecular Basis of Rhodomyrtone Resistance in Staphylococcus aureus. MBio, 2022, 13, e0383321.	1.8	7
2	Lipoproteins Cause Bone Resorption in a Mouse Model of Staphylococcus aureus Septic Arthritis. Frontiers in Microbiology, 2022, 13, 843799.	1.5	5
3	Ethnomedicinal Plants in Herbal Remedies Used for Treatment of Skin Diseases by Traditional Healers in Songkhla Province, Thailand. Plants, 2022, 11, 880.	1.6	3
4	Isolation and characterization of E. coli O157: H7 novel bacteriophage for controlling this food-borne pathogen. Virus Research, 2022, 315, 198754.	1.1	8
5	Global Transcriptomic Analysis of Bacteriophage-Host Interactions between a Kayvirus Therapeutic Phage and Staphylococcus aureus. Microbiology Spectrum, 2022, 10, e0012322.	1.2	3
6	Staphylococcus aureus lipoproteins promote abscess formation in mice, shielding bacteria from immune killing. Communications Biology, 2021, 4, 432.	2.0	14
7	The Ambivalent Role of Skin Microbiota and Adrenaline in Wound Healing and the Interplay between Them. International Journal of Molecular Sciences, 2021, 22, 4996.	1.8	9
8	Lipoproteins Are Responsible for the Pro-Inflammatory Property of Staphylococcus aureus Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 7099.	1.8	17
9	Identification of the Natural Transformation Genes in Riemerella anatipestifer by Random Transposon Mutagenesis. Frontiers in Microbiology, 2021, 12, 712198.	1.5	3
10	The Multitasking Surface Protein of Staphylococcus epidermidis: Accumulation-Associated Protein (Aap). MBio, 2021, 12, e0198921.	1.8	4
11	The MpsAB Bicarbonate Transporter Is Superior to Carbonic Anhydrase in Biofilm-Forming Bacteria with Limited CO ₂ Diffusion. Microbiology Spectrum, 2021, 9, e0030521.	1.2	8
12	Staphylococcus aureus Genomes Harbor Only MpsAB-Like Bicarbonate Transporter but Not Carbonic Anhydrase as Dissolved Inorganic Carbon Supply System. Microbiology Spectrum, 2021, 9, e0097021.	1.2	5
13	Microplastic Contamination in the Human Gastrointestinal Tract and Daily Consumables Associated with an Indonesian Farming Community. Sustainability, 2021, 13, 12840.	1.6	37
14	Molecular Mechanisms of Staphylococcus and Pseudomonas Interactions in Cystic Fibrosis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 824042.	1.8	33
15	Microplastic Contamination in Human Stools, Foods, and Drinking Water Associated with Indonesian Coastal Population. Environments - MDPI, 2021, 8, 138.	1.5	42
16	<i>Staphylococcus aureus</i> Lpl protein triggers human host cell invasion via activation of Hsp90 receptor. Cellular Microbiology, 2020, 22, e13111.	1.1	23
17	Lipoproteins in Gram-Positive Bacteria: Abundance, Function, Fitness. Frontiers in Microbiology, 2020, 11, 582582.	1.5	41
18	Dietary Intakes of Zinc, Copper, Magnesium, Calcium, Phosphorus, and Sodium by the General Adult Population Aged 20–50 Years in Shiraz, Iran: A Total Diet Study Approach. Nutrients, 2020, 12, 3370.	1.7	24

#	Article	IF	CITATIONS
19	Lipoprotein <i>N</i> -Acylation in <i>Staphylococcus aureus</i> Is Catalyzed by a Two-Component Acyl Transferase System. MBio, 2020, 11, .	1.8	19
20	The Genome of Staphylococcus epidermidis O47. Frontiers in Microbiology, 2020, 11, 2061.	1.5	13
21	New insights in the coordinated amidase and glucosaminidase activity of the major autolysin (Atl) in Staphylococcus aureus. Communications Biology, 2020, 3, 695.	2.0	24
22	The Neuromodulator-Encoding sadA Gene Is Widely Distributed in the Human Skin Microbiome. Frontiers in Microbiology, 2020, 11, 573679.	1.5	9
23	Sppl Forms a Membrane Protein Complex with SppA and Inhibits Its Protease Activity in Bacillus subtilis. MSphere, 2020, 5, .	1.3	3
24	Trace amines produced by skin bacteria accelerate wound healing in mice. Communications Biology, 2020, 3, 277.	2.0	32
25	The role of Staphylococcus aureus lipoproteins in hematogenous septic arthritis. Scientific Reports, 2020, 10, 7936.	1.6	17
26	Involvement of caspaseâ€1 in inflammasomes activation and bacterial clearance in <scp> <i>S. aureus</i> </scp> â€infected osteoblastâ€like <scp>MG</scp> â€63 cells. Cellular Microbiology, 2020, 22, e13204.	1.1	8
27	In Silico and in Vitro Study of Trace Amines (TA) and Dopamine (DOP) Interaction with Human Alpha 1-Adrenergic Receptor and the Bacterial Adrenergic Receptor QseC. Cellular Physiology and Biochemistry, 2020, 54, 888-898.	1.1	17
28	MpsAB is important for Staphylococcus aureus virulence and growth at atmospheric CO2 levels. Nature Communications, 2019, 10, 3627.	5.8	22
29	Oxidative stress drives the selection of quorum sensing mutants in the <i>Staphylococcus aureus</i> population. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19145-19154.	3.3	28
30	Staphylococcus aureus induces DNA damage in host cell. Scientific Reports, 2019, 9, 7694.	1.6	26
31	The YIN and YANG of lipoproteins in developing and preventing infectious arthritis by Staphylococcus aureus. PLoS Pathogens, 2019, 15, e1007877.	2.1	25
32	Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors. Nature Communications, 2019, 10, 2730.	5.8	74
33	Inactivation of farR Causes High Rhodomyrtone Resistance and Increased Pathogenicity in Staphylococcus aureus. Frontiers in Microbiology, 2019, 10, 1157.	1.5	14
34	A new host cell internalisation pathway for SadAâ€expressing staphylococci triggered by excreted neurochemicals. Cellular Microbiology, 2019, 21, e13044.	1.1	18
35	Bacterial Excretion of Cytoplasmic Proteins (ECP): Occurrence, Mechanism, and Function. Trends in Microbiology, 2019, 27, 176-187.	3.5	63
36	The Polycyclic Polyprenylated Acylphloroglucinol Antibiotic PPAP 23 Targets the Membrane and Iron Metabolism in Staphylococcus aureus. Frontiers in Microbiology, 2019, 10, 14.	1.5	22

#	Article	IF	CITATIONS
37	Rhodomyrtone (Rom) is a membrane-active compound. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1114-1124.	1.4	29
38	SadA-Expressing Staphylococci in the Human Gut Show Increased Cell Adherence and Internalization. Cell Reports, 2018, 22, 535-545.	2.9	74
39	Staphylococcal (phospho)lipases promote biofilm formation and host cell invasion. International Journal of Medical Microbiology, 2018, 308, 653-663.	1.5	40
40	Nicotine Enhances Staphylococcus epidermidis Biofilm Formation by Altering the Bacterial Autolysis, Extracellular DNA Releasing, and Polysaccharide Intercellular Adhesin Production. Frontiers in Microbiology, 2018, 9, 2575.	1.5	15
41	Staphylococcal Enterotoxins Dose-Dependently Modulate the Generation of Myeloid-Derived Suppressor Cells. Frontiers in Cellular and Infection Microbiology, 2018, 8, 321.	1.8	17
42	A Secreted Bacterial Peptidylarginine Deiminase Can Neutralize Human Innate Immune Defenses. MBio, 2018, 9, .	1.8	55
43	Toll-Like Receptor 2 and Lipoprotein-Like Lipoproteins Enhance Staphylococcus aureus Invasion in Epithelial Cells. Infection and Immunity, 2018, 86, .	1.0	12
44	Genetic Adaptation of a Mevalonate Pathway Deficient Mutant in Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 1539.	1.5	7
45	Lantibiotic production is a burden for the producing staphylococci. Scientific Reports, 2018, 8, 7471.	1.6	18
46	Aspartate tightens the anchoring of staphylococcal lipoproteins to the cytoplasmic membrane. MicrobiologyOpen, 2017, 6, e00525.	1.2	6
47	Non-classical Protein Excretion Is Boosted by PSMα-Induced Cell Leakage. Cell Reports, 2017, 20, 1278-1286.	2.9	68
48	Impact of cell wall peptidoglycan O- acetylation on the pathogenesis of Staphylococcus aureus in septic arthritis. International Journal of Medical Microbiology, 2017, 307, 388-397.	1.5	21
49	Staphylococcus carnosus: from starter culture to protein engineering platform. Applied Microbiology and Biotechnology, 2017, 101, 8293-8307.	1.7	36
50	Lipid moieties on lipoproteins of commensal and non-commensal staphylococci induce differential immune responses. Nature Communications, 2017, 8, 2246.	5.8	56
51	Staphylococcus aureus Lpl Lipoproteins Delay C2/M Phase Transition in HeLa Cells. Frontiers in Cellular and Infection Microbiology, 2016, 6, 201.	1.8	18
52	Evaluation of Staphylococcus aureus Lipoproteins: Role in Nutritional Acquisition and Pathogenicity. Frontiers in Microbiology, 2016, 7, 1404.	1.5	75
53	Adaptive immune response to lipoproteins of Staphylococcus aureus in healthy subjects. Proteomics, 2016, 16, 2667-2677.	1.3	13
54	Peptidoglycan Recycling in Gram-Positive Bacteria Is Crucial for Survival in Stationary Phase. MBio, 2016, 7, .	1.8	89

#	Article	IF	CITATIONS
55	Lipoproteins of Gram-Positive Bacteria: Key Players in the Immune Response and Virulence. Microbiology and Molecular Biology Reviews, 2016, 80, 891-903.	2.9	146
56	Dual Targeting of Cell Wall Precursors by Teixobactin Leads to Cell Lysis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6510-6517.	1.4	74
57	Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nature Communications, 2016, 7, 12304.	5.8	86
58	Excreted Cytoplasmic Proteins Contribute to Pathogenicity in Staphylococcus aureus. Infection and Immunity, 2016, 84, 1672-1681.	1.0	60
59	Daptomycin Tolerance in the Staphylococcus aureus pitA6 Mutant Is Due to Upregulation of thedltOperon. Antimicrobial Agents and Chemotherapy, 2016, 60, 2684-2691.	1.4	32
60	VraH Is the Third Component of the Staphylococcus aureus VraDEH System Involved in Gallidermin and Daptomycin Resistance and Pathogenicity. Antimicrobial Agents and Chemotherapy, 2016, 60, 2391-2401.	1.4	38
61	Hypoglycemic activity and stability enhancement of human insulin–tat mixture loaded in elastic anionic niosomes. Drug Delivery, 2016, 23, 3157-3167.	2.5	10
62	Role of the Na + -translocating NADH:quinone oxidoreductase in voltage generation and Na + extrusion in Vibrio cholerae. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 473-482.	0.5	22
63	Skin-Specific Unsaturated Fatty Acids Boost the Staphylococcus aureus Innate Immune Response. Infection and Immunity, 2016, 84, 205-215.	1.0	61
64	Excretion of cytoplasmic proteins in Staphylococcus is most likely not due to cell lysis. Current Genetics, 2016, 62, 19-23.	0.8	47
65	Dynamic in vivo mutations within the ica operon during persistence of Staphylococcus aureus in the airways of cystic fibrosis patients. PLoS Pathogens, 2016, 12, e1006024.	2.1	50
66	Enhanced eryptosis contributes to anemia in lung cancer patients. Oncotarget, 2016, 7, 14002-14014.	0.8	41
67	Secretome analysis revealed adaptive and nonâ€adaptive responses of the Staphylococcus carnosus femB mutant. Proteomics, 2015, 15, 1268-1279.	1.3	29
68	Excretion of cytoplasmic proteins (<scp>ECP</scp>) in <scp><i>S</i></scp> <i>taphylococcus aureus</i> . Molecular Microbiology, 2015, 97, 775-789.	1.2	57
69	The MazEF Toxin-Antitoxin System Alters the β-Lactam Susceptibility of Staphylococcus aureus. PLoS ONE, 2015, 10, e0126118.	1.1	39
70	The μ2Saα Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells. PLoS Pathogens, 2015, 11, e1004984.	2.1	73
71	Phenolâ€soluble modulin <i>α</i> induces G2/M phase transition delay in eukaryotic HeLa cells. FASEB Journal, 2015, 29, 1950-1959.	0.2	29
72	Sodium polyanethol sulfonate (SPS) falsifies protein staining and quantification and how to solve this problem. Journal of Microbiological Methods, 2015, 118, 176-181.	0.7	1

#	Article	IF	CITATIONS
73	Peptidoglycan perception—Sensing bacteria by their common envelope structure. International Journal of Medical Microbiology, 2015, 305, 217-223.	1.5	33
74	The Staphylococcus aureus NuoL-Like Protein MpsA Contributes to the Generation of Membrane Potential. Journal of Bacteriology, 2015, 197, 794-806.	1.0	38
75	Excretion of cytosolic proteins (ECP) in bacteria. International Journal of Medical Microbiology, 2015, 305, 230-237.	1.5	56
76	The bacterial cell envelope: Structure, function, and infection interface. International Journal of Medical Microbiology, 2015, 305, 175-177.	1.5	7
77	Understanding the Structure–Function Relationship of Lysozyme Resistance in <i>Staphylococcus aureus</i> by Peptidoglycan O-Acetylation Using Molecular Docking, Dynamics, and Lysis Assay. Journal of Chemical Information and Modeling, 2015, 55, 760-770.	2.5	62
78	Staphylococcus epidermidis SrrAB Regulates Bacterial Growth and Biofilm Formation Differently under Oxic and Microaerobic Conditions. Journal of Bacteriology, 2015, 197, 459-476.	1.0	52
79	Inhibition of staphylococcal biofilm-related gene transcription by rhodomyrtone, a new antibacterial agent. Annals of Microbiology, 2015, 65, 659-665.	1.1	9
80	Killing of Staphylococci by Î,-Defensins Involves Membrane Impairment and Activation of Autolytic Enzymes. Antibiotics, 2014, 3, 617-631.	1.5	36
81	Structural and Functional Analysis of Bacillus subtilis YisP Reveals a Role of Its Product in Biofilm Production. Chemistry and Biology, 2014, 21, 1557-1563.	6.2	44
82	Epidermin and gallidermin: Staphylococcal lantibiotics. International Journal of Medical Microbiology, 2014, 304, 63-71.	1.5	87
83	NOD2 Stimulation by Staphylococcus aureus-Derived Peptidoglycan Is Boosted by Toll-Like Receptor 2 Costimulation with Lipoproteins in Dendritic Cells. Infection and Immunity, 2014, 82, 4681-4688.	1.0	37
84	Structure-Function Analysis of Staphylococcus aureus Amidase Reveals the Determinants of Peptidoglycan Recognition and Cleavage. Journal of Biological Chemistry, 2014, 289, 11083-11094.	1.6	37
85	Functional and structural analysis of the major amidase (Atl) in Staphylococcus. International Journal of Medical Microbiology, 2014, 304, 156-163.	1.5	33
86	The NreA Protein Functions as a Nitrate Receptor in the Staphylococcal Nitrate Regulation System. Journal of Molecular Biology, 2014, 426, 1539-1553.	2.0	40
87	The role of serum proteins in Staphylococcus aureus adhesion to ethylene glycol coated surfaces. International Journal of Medical Microbiology, 2014, 304, 949-957.	1.5	13
88	Synthesis of the acylphloroglucinols rhodomyrtone and rhodomyrtosone B. Tetrahedron, 2013, 69, 8559-8563.	1.0	43
89	Both Terminal Oxidases Contribute to Fitness and Virulence during Organ-Specific Staphylococcus aureus Colonization. MBio, 2013, 4, e00976-13.	1.8	38
90	Ligand-Binding Properties and Conformational Dynamics of Autolysin Repeat Domains in Staphylococcal Cell Wall Recognition. Journal of Bacteriology, 2012, 194, 3789-3802.	1.0	72

#	Article	IF	CITATIONS
91	Phylogeny of the Staphylococcal Major Autolysin and Its Use in Genus and Species Typing. Journal of Bacteriology, 2012, 194, 2630-2636.	1.0	29
92	WIPI-1 Positive Autophagosome-Like Vesicles Entrap Pathogenic <i>Staphylococcus aureus</i> for Lysosomal Degradation. International Journal of Cell Biology, 2012, 2012, 1-13.	1.0	34
93	What Distinguishes Highly Pathogenic Staphylococci from Medium- and Non-pathogenic?. Current Topics in Microbiology and Immunology, 2012, 358, 33-89.	0.7	50
94	Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Molecular Microbiology, 2010, 75, 864-873.	1.2	232
95	A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cellular Microbiology, 2010, 12, 1746-1764.	1.1	133
96	Characterization of peptide deformylase homologues from Staphylococcus epidermidis. Microbiology (United Kingdom), 2010, 156, 3194-3202.	0.7	5
97	Staphylococcal Major Autolysin (Atl) Is Involved in Excretion of Cytoplasmic Proteins. Journal of Biological Chemistry, 2010, 285, 36794-36803.	1.6	105
98	Structural Basis of Cell Wall Cleavage by a Staphylococcal Autolysin. PLoS Pathogens, 2010, 6, e1000807.	2.1	78
99	Repair of Global Regulators in <i>Staphylococcus aureus</i> 8325 and Comparative Analysis with Other Clinical Isolates. Infection and Immunity, 2010, 78, 2877-2889.	1.0	340
100	Genomic differences between the food-grade Staphylococcus carnosus and pathogenic staphylococcal species. International Journal of Medical Microbiology, 2010, 300, 104-108.	1.5	22
101	Staphylococcal lipoproteins and their role in bacterial survival in mice. International Journal of Medical Microbiology, 2010, 300, 155-160.	1.5	39
102	Staphylococcus aureus Evades Lysozyme-Based Peptidoglycan Digestion that Links Phagocytosis, Inflammasome Activation, and IL-1β Secretion. Cell Host and Microbe, 2010, 7, 38-49.	5.1	239
103	Genome Analysis of the Meat Starter Culture Bacterium <i>Staphylococcus carnosus</i> TM300. Applied and Environmental Microbiology, 2009, 75, 811-822.	1.4	134
104	Lipoproteins in <i>Staphylococcus aureus</i> Mediate Inflammation by TLR2 and Iron-Dependent Growth In Vivo. Journal of Immunology, 2009, 182, 7110-7118.	0.4	81
105	Activity of the major staphylococcal autolysin Atl. FEMS Microbiology Letters, 2006, 259, 260-268.	0.7	251
106	The Presence of Peptidoglycan O-Acetyltransferase in Various Staphylococcal Species Correlates with Lysozyme Resistance and Pathogenicity. Infection and Immunity, 2006, 74, 4598-4604.	1.0	138
107	Staphylococcus aureus Deficient in Lipidation of Prelipoproteins Is Attenuated in Growth and Immune Activation. Infection and Immunity, 2005, 73, 2411-2423.	1.0	195
108	Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Molecular Microbiology, 2004, 55, 778-787.	1.2	402

#	Article	IF	CITATIONS
109	Staphylococci in colonization and disease: prospective targets for drugs and vaccines. Current Opinion in Microbiology, 2004, 7, 477-487.	2.3	66
110	Staphylococcus and biofilms. Molecular Microbiology, 2002, 43, 1367-1378.	1.2	1,048
111	Physical and genetic map of the genome of Staphylococcus carnosus TM300. Microbiology (United) Tj ETQq1 1 C).784314 r 0.7	rgBT /Overlo 20
112	Characterization of theN-Acetylglucosaminyltransferase Activity Involved in the Biosynthesis of the Staphylococcus epidermidisPolysaccharide Intercellular Adhesin. Journal of Biological Chemistry, 1998, 273, 18586-18593.	1.6	415
113	Evidence for autolysinâ€mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Molecular Microbiology, 1997, 24, 1013-1024.	1.2	651
114	Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Molecular Microbiology, 1996, 20, 1083-1091.	1.2	899
115	In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Molecular Microbiology, 1996, 21, 491-500.	1.2	98
116	Protoplast transformation of Staphylococcus carnosus by plasmid DNA. Molecular Genetics and Genomics, 1983, 189, 340-342.	2.4	56
117	Colonization of Medical Devices by Coagulase-Negative Staphylococci. , 0, , 55-88.		48