Li-Wen Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/337330/publications.pdf

Version: 2024-02-01

340 papers 11,608 citations

53 h-index 87 g-index

417 all docs

417 docs citations

417 times ranked 11199 citing authors

#	Article	IF	Citations
1	Asymmetric catalysis with chiral primary amine-based organocatalysts. Chemical Communications, 2009, , 1807.	2.2	388
2	Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nature Communications, 2018, 9, 3828.	5.8	279
3	Shape-Controlled Synthesis of All-Inorganic CsPbBr ₃ Perovskite Nanocrystals with Bright Blue Emission. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28824-28830.	4.0	271
4	Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catalysis Science and Technology, 2015, 5, 2554-2574.	2.1	263
5	Primary amino acids: privileged catalysts in enantioselective organocatalysis. Organic and Biomolecular Chemistry, 2008, 6, 2047.	1.5	258
6	The recent synthesis and application of silicon-stereogenic silanes: A renewed and significant challenge in asymmetric synthesis. Chemical Society Reviews, 2011, 40, 1777-1790.	18.7	215
7	Asymmetric Synthesis with Siliconâ€Based Bulky Amino Organocatalysts. Advanced Synthesis and Catalysis, 2010, 352, 243-279.	2.1	214
8	A Catalytic Enantioselective Azaâ€Michael Reaction: Novel Protocols for Asymmetric Synthesis of βâ€Amino Carbonyl Compounds. European Journal of Organic Chemistry, 2005, 2005, 633-639.	1.2	203
9	Prediction of the Solvation and Structural Properties of Ionic Liquids in Water by Two-Dimensional Correlation Spectroscopy. Journal of Physical Chemistry B, 2008, 112, 6411-6419.	1.2	200
10	Identification of Modular Chiral Bisphosphines Effective for Cu(I)-Catalyzed Asymmetric Allylation and Propargylation of Ketones. Journal of the American Chemical Society, 2010, 132, 6638-6639.	6.6	174
11	A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides. Chemical Communications, 2003, , 2042.	2.2	160
12	Catalytic synthesis of chiral organoheteroatom compounds of silicon, phosphorus, and sulfur via asymmetric transition metal-catalyzed Câ€"H functionalization. Coordination Chemistry Reviews, 2017, 330, 37-52.	9.5	145
13	Asymmetric Michael Addition Mediated by Novel Cinchona Alkaloid-Derived Bifunctional Catalysts Containing Sulfonamides. Organic Letters, 2009, 11, 437-440.	2.4	141
14	Spiro Linkage as an Alternative Strategy for Promising Nonfullerene Acceptors in Organic Solar Cells. Advanced Functional Materials, 2015, 25, 5954-5966.	7.8	140
15	Perovskite solar cells with a DMSO-treated PEDOT:PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability. Nanoscale, 2017, 9, 4236-4243.	2.8	135
16	Rational Strategy to Stabilize an Unstable Highâ€Efficiency Binary Nonfullerene Organic Solar Cells with a Third Component. Advanced Energy Materials, 2019, 9, 1900376.	10.2	132
17	Asymmetric Reductive Mannich Reaction to Ketimines Catalyzed by a Cu(I) Complex. Journal of the American Chemical Society, 2008, 130, 16146-16147.	6.6	123
18	Transition-metal-catalyzed transfer carbonylation with HCOOH or HCHO as non-gaseous C1 source. Coordination Chemistry Reviews, 2017, 336, 43-53.	9.5	119

#	Article	IF	Citations
19	The Direct Asymmetric Vinylogous Aldol Reaction of Furanones with αâ€Ketoesters: Access to Chiral γâ€Butenolides and Glycerol Derivatives. Angewandte Chemie - International Edition, 2011, 50, 1861-1864.	7.2	113
20	Highly efficient aza-Michael reactions of aromatic amines and N-heterocycles catalyzed by a basic ionic liquid under solvent-free conditions. Tetrahedron Letters, 2006, 47, 7723-7726.	0.7	106
21	Recent Advances in Transition-Metal-Catalyzed Silylations of Arenes with Hydrosilanes: C–X Bond Cleavage or C–H Bond ActivationÂ-Synchronized with Si–H Bond Activation. Synthesis, 2015, 47, 3645-3668.	1.2	105
22	Aromatic Amideâ€Derived Nonâ€Biaryl Atropisomers as Highly Efficient Ligands in Silverâ€Catalyzed Asymmetric Cycloaddition Reactions. Angewandte Chemie - International Edition, 2015, 54, 5255-5259.	7.2	104
23	A green, ionic liquid and quaternary ammonium salt-catalyzed aza-Michael reaction of \hat{l}_{\pm},\hat{l}^2 -ethylenic compounds with amines in water. New Journal of Chemistry, 2004, 28, 183-184.	1.4	98
24	Desymmetrization Catalyzed by Transitionâ€Metal Complexes: Enantioselective Formation of Siliconâ€Stereogenic Silanes. Angewandte Chemie - International Edition, 2012, 51, 12932-12934.	7.2	98
25	Highly efficient KF/Al2O3-catalyzed versatile hetero-Michael addition of nitrogen, oxygen, and sulfur nucleophiles to $\hat{l}\pm,\hat{l}^2$ -ethylenic compounds. Tetrahedron Letters, 2005, 46, 3279-3282.	0.7	89
26	Controllable Siâ^'C Bond Activation Enables Stereocontrol in the Palladiumâ€Catalyzed [4+2] Annulation of Cyclopropenes with Benzosilacyclobutanes. Angewandte Chemie - International Edition, 2020, 59, 790-797.	7.2	89
27	Transition Metal Salt-Catalyzed Direct Three-Component Mannich Reactions of Aldehydes, Ketones, and Carbamates: Efficient Synthesis of N-Protected β-Aryl-β-Amino Ketone Compounds. Journal of Organic Chemistry, 2004, 69, 8482-8484.	1.7	88
28	Copper(I) complex employed in organic light-emitting electrochemical cells: Device and spectra shift. Applied Physics Letters, 2005, 87, 233512.	1.5	86
29	Novel Biginelli-like three-component cyclocondensation reaction: efficient synthesis of 5-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Letters, 2004, 45, 7951-7953.	0.7	85
30	Upconversion Nanocrystals Mediated Lateral-Flow Nanoplatform for <i>in Vitro</i> Detection. ACS Applied Materials & Detection. ACS Applied Materials & Detection. ACS	4.0	79
31	Transition-Metal-BasedLewis Acid Catalysis of Aza-TypeMichael Additions of Amines tol±,l²-Unsaturated Electrophiles in Water. Helvetica Chimica Acta, 2004, 87, 1522-1526.	1.0	78
32	Enantioselective Copperâ€Catalyzed Azide–Alkyne Click Cycloaddition to Desymmetrization of Maleimideâ€Based Bis(alkynes). Chemistry - A European Journal, 2015, 21, 554-558.	1.7	76
33	Efficient and mild benzoin condensation reaction catalyzed by simple 1-N-alkyl-3-methylimidazolium salts. Tetrahedron Letters, 2005, 46, 5317-5320.	0.7	73
34	Recent Applications of $\hat{I}\pm$ -Amido Sulfones as in situ Equivalents of Activated Imines for Asymmetric Catalytic Nucleophilic Addition Reactions. Synthesis, 2010, 2010, 3583-3595.	1.2	73
35	Synthesis of silacyclobutanes and their catalytic transformations enabled by transition-metal complexes. Coordination Chemistry Reviews, 2018, 374, 93-113.	9.5	73
36	Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry. Beilstein Journal of Organic Chemistry, 2015, 11, 2557-2576.	1.3	72

#	Article	IF	Citations
37	Comparison of the Blue-Shifted Câ^'D Stretching Vibrations for DMSO-d6 in Imidazolium-Based Room Temperature Ionic Liquids and in Water. Journal of Physical Chemistry B, 2009, 113, 5978-5984.	1.2	71
38	Design and Control of the Luminescence of Cr ³⁺ -Doped Phosphors in the Near-Infrared I Region by Fitting the Crystal Field. Crystal Growth and Design, 2018, 18, 3178-3186.	1.4	69
39	The Upconversion Luminescence of Er3+/Yb3+/Nd3+ Triply-Doped \hat{l}^2 -NaYF4 Nanocrystals under 808-nm Excitation. Materials, 2014, 7, 7289-7303.	1.3	67
40	Palladium-catalyzed Si–C bond-forming silylation of aryl iodides with hydrosilanes: an enhanced enantioselective synthesis of silicon-stereogenic silanes by desymmetrization. RSC Advances, 2016, 6, 67113-67117.	1.7	67
41	The Discovery of Multifunctional Chiral P Ligands for the Catalytic Construction of Quaternary Carbon/Silicon and Multiple Stereogenic Centers. Accounts of Chemical Research, 2021, 54, 452-470.	7.6	67
42	Powerful Amino Acid Derived Bifunctional Phosphine Catalysts Bearing a Hydrogen Bond Donor in Asymmetric Synthesis. ChemCatChem, 2013, 5, 2775-2784.	1.8	63
43	Pdâ€Catalyzed Enantioselective Ring Opening/Crossâ€Coupling and Cyclopropanation of Cyclobutanones. Angewandte Chemie - International Edition, 2019, 58, 897-901.	7.2	63
44	An efficient and inexpensive catalyst system for the aza-Michael reactions of enones with carbamatesElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b3/b307733k/. Chemical Communications, 2003, , 2570.	2.2	62
45	Enantioselective Crossâ€Exchange between Câ^'l and Câ^'C Ïf Bonds. Angewandte Chemie - International Edition, 2019, 58, 6747-6751.	7.2	62
46	Zn2+-selective fluorescent turn-on chemosensor based on terpyridine-substituted siloles. Dyes and Pigments, 2012, 95, 174-179.	2.0	61
47	Enantioselective Rhodium-Catalyzed Desymmetric Hydrosilylation of Cyclopropenes. ACS Catalysis, 2019, 9, 9110-9116.	5.5	61
48	Enantioselective Michael-Type Friedel–Crafts Reactions of Indoles to Enones Catalyzed by a Chiral Camphor-Based Brønsted Acid. European Journal of Organic Chemistry, 2006, 2006, 5225-5227.	1.2	60
49	Supported basic ionic liquid: Highly effective catalyst for the synthesis of 1,2-propylene glycol from hydrolysis of propylene carbonate. Journal of Molecular Catalysis A, 2008, 279, 230-234.	4.8	59
50	Highly efficient phosphine-catalyzed aza-Michael reactions of $\hat{l}\pm,\hat{l}^2$ -unsaturated compounds with carbamates in the presence of TMSCl. Tetrahedron Letters, 2004, 45, 4507-4510.	0.7	58
51	Reactions of an Isolable Dialkylsilylene with Carbon Dioxide and Related Heterocumulenes. Organometallics, 2014, 33, 5434-5439.	1.1	57
52	Stereospecific Si-C coupling and remote control of axial chirality by enantioselective palladium-catalyzed hydrosilylation of maleimides. Nature Communications, 2020, 11, 2904.	5.8	56
53	Neighboring Lithiumâ€Assisted [1,2]â€Wittig Rearrangement: Practical Access to Diarylmethanolâ€Based 1,4â€Diols and Optically Active BINOL Derivatives with Axial and sp ³ â€Central Chirality. Chemistry - A European Journal, 2011, 17, 2698-2703.	1.7	55
54	Enantioselective palladium/copper-catalyzed C–C σ-bond activation synergized with Sonogashira-type C(sp ³)–C(sp) cross-coupling alkynylation. Chemical Science, 2019, 10, 7579-7583.	3.7	55

#	Article	IF	Citations
55	Catalytic Silylations of Alcohols: Turning Simple Protectingâ€Group Strategies into Powerful Enantioselective Synthetic Methods. Angewandte Chemie - International Edition, 2015, 54, 9456-9466.	7.2	54
56	Aromatic-Amide-Derived Nonbiaryl Atropisomer as Highly Efficient Ligand for Asymmetric Silver-Catalyzed [3 + 2] Cycloaddition. ACS Catalysis, 2015, 5, 6016-6020.	5.5	54
57	Improving the Quality and Luminescence Performance of Allâ€Inorganic Perovskite Nanomaterials for Lightâ€Emitting Devices by Surface Engineering. Small, 2020, 16, e1907089.	5.2	54
58	Pd-Catalyzed Enantioselective Tandem C–C Bond Activation/Cacchi Reaction between Cyclobutanones and <i>o</i> -Ethynylanilines. Organic Letters, 2021, 23, 1309-1314.	2.4	54
59	Highly efficientN-Heterocyclic carbene–palladium complex-catalyzed multicomponent carbonylative Suzuki reaction: novel practical synthesis of unsymmetric aryl ketones. Applied Organometallic Chemistry, 2007, 21, 772-776.	1.7	53
60	Cooperative and Enantioselective NbCl ₅ /Primary Amine Catalyzed Biginelli Reaction. European Journal of Organic Chemistry, 2010, 2010, 4986-4990.	1.2	53
61	Hydrosilane and bismuth-accelerated palladium catalyzed aerobic oxidative esterification of benzylic alcohols with air. Chemical Communications, 2012, 48, 8592.	2.2	53
62	Highly Efficient pâ€iâ€n Perovskite Solar Cells Utilizing Novel Lowâ€Temperature Solutionâ€Processed Hole Transport Materials with Linear Ï€â€Conjugated Structure. Small, 2016, 12, 4902-4908.	5.2	53
63	Enantioselective synthesis of axially chiral vinyl arenes through palladium-catalyzed C–H olefination. Chemical Communications, 2018, 54, 10706-10709.	2.2	53
64	Efficient catalytic aza-Michael additions of carbamates to enones: revisited dual activation of hard nucleophiles and soft electrophiles by InCl3/TMSCl catalyst system. Tetrahedron Letters, 2007, 48, 1599-1603.	0.7	52
65	Catalytic Asymmetric trans-Selective Hydrosilylation of Bisalkynes to Access AIE and CPL-Active Silicon-Stereogenic Benzosiloles. IScience, 2020, 23, 101268.	1.9	52
66	Modular Synthesis of Arâ€BINMOLâ€Phos for Catalytic Asymmetric Alkynylation of Aromatic Aldehydes with Unexpected Reversal of Enantioselectivity. Advanced Synthesis and Catalysis, 2014, 356, 1708-1718.	2.1	48
67	Pdâ€Catalyzed Enantioselective Ring Opening/Crossâ€Coupling and Cyclopropanation of Cyclobutanones. Angewandte Chemie, 2018, 131, 907.	1.6	47
68	Silicon-Based Lewis Acid Assisted Cinchona Alkaloid Catalysis: Highly Enantioselective Aza-Michael Reaction under Solvent-Free Conditions. Organic Letters, 2011, 13, 6508-6511.	2.4	46
69	Synthesis of Arâ€BINMOL Ligands by [1,2]â€Wittig Rearrangement to Probe Their Catalytic Activity in 1,2â€Addition Reactions of Aldehydes with Grignard Reagents. European Journal of Organic Chemistry, 2013, 2013, 748-755.	1.2	46
70	Co-responsive smart cyclodextrin-gated mesoporous silica nanoparticles with ligand-receptor engagement for anti-cancer treatment. Materials Science and Engineering C, 2019, 103, 109831.	3.8	46
71	The first ionic liquids promoted conjugate addition of azide ion to \hat{l}_{\pm},\hat{l}^2 -unsaturated carbonyl compounds. Tetrahedron Letters, 2004, 45, 1219-1221.	0.7	45
72	Revealing the Effect of Additives with Different Solubility on the Morphology and the Donor Crystalline Structures of Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 18231-18237.	4.0	44

#	Article	IF	Citations
73	Catalytic Asymmetric Carbonylation of Prochiral Sulfonamides via C–H Desymmetrization. ACS Catalysis, 2019, 9, 1431-1436.	5.5	44
74	Disilanylene-bridged BODIPY-based Dâ \in " <i>\hat{j}</i> $ \hat{j} $ A architectures: a novel promising series of NLO chromophores. Chemical Communications, 2018, 54, 8834-8837.	2.2	43
75	Efficient synthesis of chlorohydrins: ionic liquid promoted ring-opening reaction of epoxides and TMSCI. Tetrahedron Letters, 2004, 45, 2435-2438.	0.7	42
76	Is the blue shift of C–H vibration in DMF–water mixture mainly caused by C–Hâ√O interaction?. Chemical Physics Letters, 2004, 394, 405-409.	1.2	42
77	The methyl C–H blueshift in N,N-dimethylformamide-water mixtures probed by two-dimensional Fourier-transform infrared spectroscopy. Journal of Chemical Physics, 2006, 124, 244502.	1.2	42
78	Development of a Novel Multifunctional N,P Ligand for Highly Enantioselective Palladium atalyzed Asymmetric Allylic Etherification of Alcohols and Silanols. Chemistry - A European Journal, 2013, 19, 15452-15457.	1.7	42
79	Modifying the Crystal Field of CsPbCl ₃ :Mn ²⁺ Nanocrystals by Co-doping to Enhance Its Red Emission by a Hundredfold. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30711-30719.	4.0	41
80	New silver(I)–monophosphine complex derived from chiral Ar-BINMOL: synthesis and catalytic activity in asymmetric vinylogous Mannich reaction. Tetrahedron, 2013, 69, 8777-8784.	1.0	39
81	Enantioselective direct fluorination and chlorination of cyclic \hat{l}^2 -ketoesters mediated by phase-transfer catalysts. Tetrahedron Letters, 2013, 54, 2623-2626.	0.7	39
82	Highly diastereoselective and enantioselective direct Michael addition of phthalide derivatives to nitroolefins. Chemical Communications, 2013, 49, 5775.	2.2	39
83	Palladium-catalyzed hydrosilylation of ynones to access silicon-stereogenic silylenones by stereospecific aromatic interaction-assisted Si-H activation. Science China Chemistry, 2021, 64, 761-769.	4.2	39
84	Multifunctional P-ligand-controlled "silicon-centered―selectivity in Rh/Cu-catalyzed Si–C bond cleavage of silacyclobutanes. Organic Chemistry Frontiers, 2021, 8, 6577-6584.	2.3	39
85	A method for the synthesis of 2-oxazolidinones and 2-imidazolidinones from five-membered cyclic carbonates and \hat{l}^2 -aminoalcohols or 1,2-diamines. Green Chemistry, 2007, 9, 369-372.	4.6	38
86	Heteropoly acids: a green and efficient heterogeneous Brønsted acidic catalyst for the intermolecular hydroamination of olefins. Tetrahedron Letters, 2008, 49, 2882-2885.	0.7	38
87	Copper atalyzed Huisgen and Oxidative Huisgen Coupling Reactions Controlled by Polysiloxaneâ€6upported Amines (AFPs) for the Divergent Synthesis of Triazoles and Bistriazoles. Chemistry - A European Journal, 2012, 18, 14094-14099.	1.7	38
88	Lewisâ€Baseâ€Mediated Diastereoselective Silylations of Alcohols: Synthesis of Siliconâ€5tereogenic Dialkoxysilanes Controlled by Chiral Aryl BINMOLs. Chemistry - an Asian Journal, 2017, 12, 1730-1735.	1.7	38
89	Direct asymmetric Mannich reaction of phthalides: facile access to chiral substituted isoquinolines and isoquinolinones. Chemical Communications, 2012, 48, 4707.	2.2	37
90	Arâ€BINMOLs with Axial and sp ³ Central Chirality – Characterization, Chiroptical Properties, and Application in Asymmetric Catalysis. European Journal of Organic Chemistry, 2011, 2011, 5039-5046.	1.2	36

#	Article	IF	Citations
91	Molecular Assembly of an Achiral Phosphine and a Chiral Primary Amine: A Highly Efficient Supramolecular Catalyst for the EnantioselectiveMichael Reaction of Aldehydes with Maleimides. Chemistry - an Asian Journal, 2013, 8, 1182-1190.	1.7	36
92	Privilege Ynone Synthesis via Palladium-Catalyzed Alkynylation of "Super-Active Esters― Organic Letters, 2015, 17, 3298-3301.	2.4	36
93	A <scp>d</scp> â€Camphorâ€Based Schiff Base as a Highly Efficient N,P Ligand for Enantioselective Palladiumâ€Catalyzed Allylic Substitutions. ChemCatChem, 2016, 8, 1495-1499.	1.8	36
94	Asymmetric Michael Addition of Aldimino Esters with Chalcones Catalyzed by Silver/Xingâ€Phos: Mechanismâ€Oriented Divergent Synthesis of Chiral Pyrrolines. Chemistry - A European Journal, 2016, 22, 10399-10404.	1.7	36
95	Catalytic Asymmetric Huisgen Alkyne–Azide Cycloaddition of Bisalkynes by Copper(I) Nanoparticles. ChemCatChem, 2018, 10, 280-286.	1.8	36
96	Polymer-Supported Ionic-Liquid-Catalyzed Synthesis of 1,2,3,4-Tetrahydro-2-oxopyrimidine-5-carboxylatesvia Biginelli Reaction. Helvetica Chimica Acta, 2005, 88, 986-989.	1.0	35
97	Highly enantioselective synthesis of warfarin and its analogs by means of cooperative LiClO4/DPEN-catalyzed Michael reaction: enantioselectivity enhancement and mechanism. Tetrahedron, 2010, 66, 9708-9713.	1.0	35
98	Chiral Ar-BINMOL-derived salan as fluorescent sensor for recognition of CuCl and cascade discrimination of α-amino acids. Tetrahedron Letters, 2013, 54, 1584-1588.	0.7	35
99	Modulation of Multifunctional N,O,P Ligands for Enantioselective Copperâ€Catalyzed Conjugate Addition of Diethylzinc and Trapping of the Zinc Enolate. Chemistry - an Asian Journal, 2013, 8, 2242-2253.	1.7	35
100	Enantioselective Fluorination of βâ€Ketoamides Catalyzed by Arâ€BINMOLâ€derived SalanCopper Complex. Advanced Synthesis and Catalysis, 2014, 356, 3769-3776.	2.1	35
101	Efficient Coupling Reactions of Arylalkynes and Aldehydes Leading to the Synthesis of Enones. Helvetica Chimica Acta, 2004, 87, 3080-3084.	1.0	34
102	Iron-catalyzed Michael reactions revisited: a synthetically useful process for the preparation of tri-carbonyl compounds and chiral warfarin. Tetrahedron Letters, 2010, 51, 3836-3839.	0.7	34
103	Recyclable Tertiary Amine Modified Diarylprolinol Ether as Aminocatalyst for the Sequential Asymmetric Synthesis of Functionalized Cyclohexanes and Chromenes. European Journal of Organic Chemistry, 2011, 2011, 5031-5038.	1.2	34
104	Probing the evolution of an Ar-BINMOL-derived salen–Co(<scp>iii</scp>) complex for asymmetric Henry reactions of aromatic aldehydes: salan–Cu(<scp>ii</scp>) versus salen–Co(<scp>iii</scp>) catalysis. RSC Advances, 2014, 4, 37859.	1.7	34
105	Siloleâ€containing poly(silylenevinylene)s: Synthesis, characterization, aggregationâ€enhanced emission, and explosive detection. Journal of Polymer Science Part A, 2012, 50, 2265-2274.	2.5	33
106	A Total Synthesis of Paeoveitol. Organic Letters, 2016, 18, 3698-3701.	2.4	33
107	Novel $br\tilde{A}_{,n}$ nsted acid-catalyzed Michael-type Friedel-Crafts reactions of indoles and acetalization of aldehydes. Journal of Molecular Catalysis A, 2006, 249, 129-134.	4.8	32
108	Noyori's Ts-DPEN ligand: an efficient bifunctional primary amine-based organocatalyst in enantio- and diastereoselective Michael addition of 1,3-dicarbonyl indane compounds to nitroolefins. Tetrahedron Letters, 2008, 49, 6773-6777.	0.7	32

#	Article	IF	CITATIONS
109	Modulation of Silver–Titania Nanoparticles on Polymethylhydrosiloxaneâ€based Semiâ€Interpenetrating Networks for Catalytic Alkynylation of Trifluoromethyl Ketones and Aromatic Aldehydes in Water. ChemCatChem, 2014, 6, 580-591.	1.8	32
110	Dual Amine―and Brønsted Acidâ€Catalyzed αâ€Allylic Alkylation of Aldehydes. Advanced Synthesis and Catalysis, 2010, 352, 1441-1445.	2.1	31
111	Fei-Phos ligand-controlled asymmetric palladium-catalyzed allylic substitutions with structurally diverse nucleophiles: scope and limitations. RSC Advances, 2016, 6, 45495-45502.	1.7	31
112	Tao-Phos-controlled desymmetrization of succinimide-based bisalkynes via asymmetric copper-catalyzed Huisgen alkyne–azide click cycloaddition: substrate scope and mechanism. RSC Advances, 2016, 6, 58698-58708.	1.7	31
113	Desymmetrizationâ€Oriented Enantioselective Synthesis of Siliconâ€Stereogenic Silanes by Palladiumâ€Catalyzed Câ^'H Olefinations. Chemistry - an Asian Journal, 2019, 14, 2082-2085.	1.7	31
114	Direct asymmetric Michael addition of phthalide derivatives to chalcones. Tetrahedron Letters, 2013, 54, 5261-5265.	0.7	30
115	Multistereogenic Phosphine Ligandâ€promoted Palladiumâ€Catalyzed Allylic Alkylation of Cyanoesters. ChemCatChem, 2015, 7, 75-79.	1.8	30
116	Palladium atalyzed Desymmetrization of Silacyclobutanes with Alkynes to Silicon tereogenic Silanes: A Density Functional Theory Study. Chemistry - an Asian Journal, 2016, 11, 2867-2875.	1.7	30
117	Diarylprolinol Silyl Ether Catalyzed Asymmetric Friedel–Crafts Alkylation of Indoles with α,βâ€Unsaturated Aldehydes: Enhanced Enantioselectivity and Mechanistic Investigations. European Journal of Organic Chemistry, 2011, 2011, 66-70.	1.2	29
118	DMSO as oxidant and sulfenylating agent for metal-free oxidation and methylthiolation of alcohol-containing indoles. RSC Advances, 2015, 5, 30389-30393.	1.7	29
119	Iridiumâ€Catalyzed Intramolecular Câ€"H Silylation of Siloxaneâ€Tethered Arene and Hydrosilane: Facile and Catalytic Synthesis of Cyclic Siloxanes. Advanced Synthesis and Catalysis, 2017, 359, 2247-2252.	2.1	29
120	3,3-Difluoroallyl ammonium salts: highly versatile, stable and selective gem-difluoroallylation reagents. Nature Communications, 2021, 12, 3257.	5.8	29
121	Efficient Iron atalyzed Sakurai–Michael Addition of Allyltrimethylsilane to Chalcones. Synthetic Communications, 2008, 38, 1011-1019.	1.1	28
122	A Chiral Cuâ€Salan Catalyst with a Rotatable Aromatic Ï€â€Wall: Molecular Recognitionâ€Oriented Asymmetric Henry Transformation of Aromatic Aldehydes. Chemistry - an Asian Journal, 2012, 7, 2008-2013.	1.7	28
123	Aromaticâ€Amideâ€Derived Olefins as a Springboard: Isomerizationâ€Initiated Palladiumâ€Catalyzed Hydrogenation of Olefins and Reductive Decarbonylation of Acyl Chlorides with Hydrosilane. Chemistry - A European Journal, 2012, 18, 8174-8179.	1.7	28
124	Catalytic Synthesis of Functional Siliconâ€Stereogenic Silanes through ⟨i⟩ Candida antarctica⟨/i⟩ Lipase B Catalyzed Remote Desymmetrization of Siliconâ€Centered Diols. European Journal of Organic Chemistry, 2013, 2013, 5814-5819.	1.2	28
125	Efficient Palladiumâ€Catalyzed CO Hydrogenolysis of Benzylic Alcohols and Aromatic Ketones with Polymethylhydrosiloxane. Advanced Synthesis and Catalysis, 2013, 355, 341-347.	2.1	28
126	Dehydrogenation and oxidative coupling of alcohol and amines catalyzed by organosilicon-supported TiO ₂ @PMHSIPN. RSC Advances, 2014, 4, 34681.	1.7	28

#	Article	IF	CITATIONS
127	Silylations of Arenes with Hydrosilanes: From Transitionâ€Metalâ€Catalyzed CX Bond Cleavage to Environmentally Benign Transitionâ€Metalâ€Free CH Bond Activation. ChemSusChem, 2015, 8, 2176-2179.	3.6	28
128	Platinumâ€Catalyzed Multicomponent Alcoholysis/Hydrosilylation and Bisâ€hydrosilylation of Alkynes with Dihydrosilanes. ChemCatChem, 2017, 9, 3111-3116.	1.8	28
129	Dual-Responsive Core Crosslinking Glycopolymer-Drug Conjugates Nanoparticles for Precise Hepatocarcinoma Therapy. Frontiers in Pharmacology, 2018, 9, 663.	1.6	28
130	Synthesis of a Novel Chiral Ionic Liquid and Its Application in Enantioselective Aldol Reactions. Helvetica Chimica Acta, 2008, 91, 53-59.	1.0	27
131	Malononitrileâ \in Assisted Highly Chemoselective Bismuth Triflate Catalyzed Conjugate Reduction of $\hat{l}\pm,\hat{l}^2\hat{a}\in$ Unsaturated Ketones. European Journal of Organic Chemistry, 2012, 2012, 02809-2815.	1.2	27
132	Molecular sieve mediated decarboxylative Mannich and aldol reactions of \hat{l}^2 -ketoacids. Tetrahedron Letters, 2013, 54, 4333-4336.	0.7	27
133	Construction of Sixâ€Membered Silacyclic Skeletons via Platinumâ€Catalyzed Tandem Hydrosilylation/Cyclization with Dihydrosilanes. Advanced Synthesis and Catalysis, 2018, 360, 2825-2830.	2.1	27
134	A Glimpse and Perspective of Current Organosilicon Chemistry from the View of Hydrosilylation and Synthesis of Silicon-Stereogenic Silanes. Synlett, 2021, 32, 1281-1288.	1.0	27
135	Exciplex emission and decay of co-deposited 4,4′,4″-tris[3-methylphenyl(phenyl)amino]triphenylamine:tris-[3-(3-pyridyl)mesityl]borane organic light-emitting devices with different electron transporting layer thicknesses. Applied Physics Letters, 2014, 104, 161112.	1.5	26
136	N-tert-Butanesulfinyl imine and aromatic tertiary amide derived non-biaryl atropisomers as chiral ligands for silver-catalyzed endo-selective [3+2] cycloaddition of azomethine ylides with maleimides. Tetrahedron, 2016, 72, 2690-2699.	1.0	26
137	Mechanistic Insights into Palladiumâ€Catalyzed Silylation of Aryl Iodides with Hydrosilanes through a DFT Study. Chemistry - an Asian Journal, 2017, 12, 1749-1757.	1.7	26
138	Highly bright and stable all-inorganic perovskite light-emitting diodes with methoxypolyethylene glycols modified CsPbBr3 emission layer. Applied Physics Letters, 2018, 113, .	1.5	26
139	Organosilicon-Mediated Organic Synthesis (SiMOS): A Personal Account. Synlett, 2020, 31, 21-34.	1.0	26
140	P/N Heteroleptic Cu(I)-Photosensitizer-Catalyzed Deoxygenative Radical Alkylation of Aromatic Alkynes with Alkyl Aldehydes Using Dipropylamine as a Traceless Linker Agent. ACS Catalysis, 2020, 10, 7563-7572.	5.5	26
141	Synthesis of crown ether-containing copolyimides and their pervaporation properties to benzene/cyclohexane mixtures. Journal of Membrane Science, 2005, 249, 33-39.	4.1	25
142	Recent Examples of Divergent Catalysis in Organic Reactions: Unexpected Findings or Rational Design?. Mini-Reviews in Organic Chemistry, 2007, 4, 217-230.	0.6	25
143	Organocatalytic azaâ€Michael/retroâ€azaâ€Michael reaction: Pronounced chirality amplification in azaâ€Michael reaction and racemization via retroâ€azaâ€Michael reaction. Chirality, 2011, 23, 397-403.	1.3	25
144	CH Functionalization/CO Bond Cleavage of Benzyl Silyl Ethers with Ynamides for the Chemoselective Synthesis of Skeletally Diverse Compounds. Advanced Synthesis and Catalysis, 2016, 358, 480-485.	2.1	25

#	Article	IF	Citations
145	High-Performance Perovskite Solar Cells with a Non-doped Small Molecule Hole Transporting Layer. ACS Applied Energy Materials, 2019, 2, 1634-1641.	2.5	25
146	AIE-Active Fluorene Derivatives for Solution-Processable Nondoped Blue Organic Light-Emitting Devices (OLEDs). ACS Applied Materials & Samp; Interfaces, 2015, 7, 28156-28165.	4.0	24
147	Copper(0)/Selectfluor System-Promoted Oxidative Carbon–Carbon Bond Cleavage/Annulation of <i>>o</i> >Aryl Chalcones: An Unexpected Synthesis of 9,10-Phenanthraquinone Derivatives. Journal of Organic Chemistry, 2017, 82, 109-118.	1.7	24
148	Enantioselective Synthesis of Chiral Imidazolidine Derivatives by Asymmetric Silver/Xingâ€Phosâ€Catalyzed Homoâ€1,3â€Dipolar [3+2] Cycloaddition of Azomethine Ylides. Advanced Synthesis and Catalysis, 2017, 359, 3577-3584.	2.1	24
149	Arrays of crystalline C60 and pentacene nanocolumns. Applied Physics Letters, 2007, 90, 193117.	1.5	23
150	A Fully Substituted 3â€6ilolene Functions as Promising Building Block for Hyperbranched Poly(Silylenevinylene). Macromolecular Rapid Communications, 2012, 33, 1074-1079.	2.0	23
151	One-by-one hydrogenation, cross-coupling reaction, and Knoevenagel condensations catalyzed by PdCl2 and the downstream palladium residue. Green Chemistry, 2013, 15, 2349.	4.6	23
152	Enantioselective cyanosilylation of aldehydes catalyzed by a multistereogenic salen–Mn(<scp>iii</scp>) complex with a rotatable benzylic group as a helping hand. RSC Advances, 2015, 5, 3098-3103.	1.7	23
153	Ligand-Controlled Inversion of Diastereo- and Enantioselectivity in Silver-Catalyzed Azomethine Ylide–Imine Cycloaddition of Glycine Aldimino Esters with Imines. Organic Letters, 2018, 20, 2551-2554.	2.4	23
154	Efficient aziridination of olefins with chloramine-T using copper iodide in water. Catalysis Communications, 2005, 6, 221-223.	1.6	22
155	Development of <scp>A</scp> râ€ <scp>BINMOL</scp> â€Derived Atropisomeric Ligands with Matched Axial and sp ³ Central Chirality for Catalytic Asymmetric Transformations. Chemical Record, 2015, 15, 925-948.	2.9	22
156	Highly efficient indium-catalyzed chemoselective allylation–etherification and reductive etherification of aromatic aldehydes with functional silanes. Tetrahedron Letters, 2008, 49, 253-256.	0.7	21
157	Homogeneous silicone modified primary amine-BrÃ, nsted acid salt catalyzed aldol reaction: unexpected synergistic effect of polysiloxane with remarkable improvement of efficiency and stereoselectivity. Tetrahedron Letters, 2008, 49, 7037-7041.	0.7	21
158	Highly efficient bimetallic ironâ€palladium catalyzed Michaelâ€type Friedel–Crafts reactions of indoles with chalcones. Applied Organometallic Chemistry, 2009, 23, 114-118.	1.7	21
159	Asymmetric Direct Aldol Reactions Catalyzed by a Simple Chiral Primary Diamine–BrâŠ~nsted Acid Catalyst in/on Water. Synthetic Communications, 2009, 39, 764-774.	1.1	21
160	BINOL-linked 1,2,3-triazoles: an unexpected fluorescent sensor with anion–l∈ interaction for iodide ions. RSC Advances, 2014, 4, 54256-54262.	1.7	21
161	Enantioselective Primary Amine Catalyzed Aldol-Type Construction of Trifluoromethylated Tertiary Alcohols. Synlett, 2014, 25, 1461-1465.	1.0	21
162	Lewis acid catalyzed [2+2] cycloaddition of ynamides and propargyl silyl ethers: synthesis of alkylidenecyclobutenones and their reactivity in ring-opening and ring expansion. Chemical Communications, 2016, 52, 9574-9577.	2.2	21

#	Article	IF	CITATIONS
163	An efficient approach toward formation of polycyclic coumarin derivatives via carbocation-initiated [4+2] cycloaddition and atom-economical photo-irradiated cyclization. Chemical Communications, 2016, 52, 11131-11134.	2.2	21
164	Highly efficient desymmetrization of cyclopropenes to azabicyclo[3.1.0]hexanes with five continuous stereogenic centers by copper-catalyzed [3 + 2] cycloadditions. Organic Chemistry Frontiers, 2018, 5, 2759-2764.	2.3	21
165	Controllable Siâ^C Bond Activation Enables Stereocontrol in the Palladiumâ€Catalyzed [4+2] Annulation of Cyclopropenes with Benzosilacyclobutanes. Angewandte Chemie, 2020, 132, 800-807.	1.6	21
166	Perovskite Solar Cells Based on Compact, Smooth FA0.1MA0.9PbI3 Film with Efficiency Exceeding 22%. Nanoscale Research Letters, 2020, 15, 89.	3.1	21
167	Improved Protocol for the Three-ComponentBiginelli Reactions andBiginelli-LikeMannich Reactions of Carbamates, Aldehydes, and Ketones. Helvetica Chimica Acta, 2004, 87, 2608-2612.	1.0	20
168	Can a Blue Shift of the CH Stretching Modes of Inactivated C Groups be an Indicator of Weak CHâ‹â‹â‹ Hydrogen Bonds?. ChemPhysChem, 2006, 7, 2460-2463.	9.0	20
169	A Lewis acid-promoted reduction of acylsilanes to \hat{l} ±-hydroxysilanes by diethylzinc. Tetrahedron Letters, 2012, 53, 2164-2166.	0.7	20
170	Oneâ€Step Production of Sulfur and Nitrogen Coâ€doped Graphitic Carbon for Oxygen Reduction: Activation Effect of Oxidized Sulfur and Nitrogen. ChemCatChem, 2014, 6, 1204-1209.	1.8	20
171	Aluminium nanoparticles synthesized by a novel wet chemical method and used to enhance the performance of polymer solar cells by the plasmonic effect. Journal of Materials Chemistry C, 2015, 3, 4099-4103.	2.7	20
172	The Structural Basis of Erwinia rhapontici Isomaltulose Synthase. PLoS ONE, 2013, 8, e74788.	1.1	19
173	The Effects of Improved Photoelectric Properties of PEDOT:PSS by Two-Step Treatments on the Performance of Polymer Solar Cells Based on PTB7-Th:PC ₇₁ BM. ACS Applied Materials & Interfaces, 2016, 8, 547-552.	4.0	19
174	Combined Dynamic Kinetic Resolution and Câ^'H Functionalization for Facile Synthesis of Nonâ€Biarylâ€Atropisomerâ€Type Axially Chiral Organosilanes. Chemistry - A European Journal, 2021, 27, 4336-4340.	1.7	19
175	Long-Distance Chirality Transfer from P-Ligand to Prochiral Dihydrosilanes via Pd(II) Aryl Iodide Complex in Pd-Catalyzed Silylation of Aryl Iodide: A DFT Study. Journal of Organic Chemistry, 2020, 85, 14360-14368.	1.7	19
176	Modular construction of multifunctional ligands for the enantioselective ruthenium-catalyzed carbenoid $Nae^{\text{"}}H$ insertion reaction: an enzyme-like and substrate-sensitive catalyst system. RSC Advances, 2015, 5, 46455-46463.	1.7	18
177	Enantioselective conjugate addition of cyanide to chalcones catalyzed by a magnesium-Py-BINMOL complex. Catalysis Science and Technology, 2015, 5, 4755-4759.	2.1	18
178	A robust and recyclable polyurea-encapsulated copper(<scp>i</scp>) chloride for one-pot ring-opening/Huisgen cycloaddition/CO ₂ capture in water. Green Chemistry, 2016, 18, 6357-6366.	4.6	18
179	Catalytic Enantioselective Synthesis of Highly Functionalized Pentafluorosulfanylated Pyrrolidines. Chemistry - A European Journal, 2018, 24, 5644-5651.	1.7	18
180	Multicolor Coding Up-Conversion Nanoplatform for Rapid Screening of Multiple Foodborne Pathogens. ACS Applied Materials & Samp; Interfaces, 2021, 13, 26782-26789.	4.0	18

#	Article	IF	CITATIONS
181	Neighboring Acetalâ€Assisted Brønstedâ€Acidâ€Catalyzed Si–H Bond Activation: Divergent Synthesis of Functional Siloxanes through Silylation and Hydrolytic Oxidation of Organosilanes. European Journal of Organic Chemistry, 2011, 2011, 1736-1742.	1.2	17
182	Substituted Functional Olefins Through Lateral Sequential Lithiation/Silylation/Condensation of Tertiary Aromatic Amides: A Ligand for Phosphaneâ€Free Palladium atalyzed Suzuki Coupling Reactions. European Journal of Organic Chemistry, 2012, 2012, 290-297.	1.2	17
183	Sevelamer as an efficient and reusable heterogeneous catalyst for the Knoevenagel reaction in water. Chinese Chemical Letters, 2014, 25, 1141-1144.	4.8	17
184	Conjugated Polymers Containing BODIPY and Fluorene Units for Sensitive Detection of CNâ^ lons: Site-Selective Synthesis, Photo-Physical and Electrochemical Properties. Polymers, 2017, 9, 512.	2.0	17
185	A pronounced ligand effect on platinumâ€catalyzed Hydrosilylation of terminal alkynes. Applied Organometallic Chemistry, 2018, 32, e4037.	1.7	17
186	Highly Crystallized Pd/Cu Nanoparticles on Activated Carbon: An Efficient Heterogeneous Catalyst for Sonogashira Cross-Coupling Reaction. Catalysts, 2020, 10, 192.	1.6	17
187	Chlorotrimethylsilane: A Powerful Lewis Acidic Catalyst in Michaelâ€Type Friedel–Crafts Reactions of Indoles and Enones. Synthetic Communications, 2007, 37, 3095-3104.	1.1	16
188	Amine-functional polysiloxanes (AFPs) as efficient polymeric organocatalyst for amino catalysis: efficient multicomponent Gewald reaction, α-allylic alkylation of aldehydes, and Knoevenagel condensation. RSC Advances, 2012, 2, 2895.	1.7	16
189	Integrated Effects of Two Additives on the Enhanced Performance of PTB7:PC71BM Polymer Solar Cells. Materials, 2016, 9, 171.	1.3	16
190	Catalytic asymmetric bromochlorination of aromatic allylic alcohols promoted by multifunctional Schiff base ligands. Organic and Biomolecular Chemistry, 2016, 14, 7927-7932.	1.5	16
191	Catalytic Synthesis of Chiral Phosphole Oxides via Desymmetric C–H Arylation of o-Bromoaryl Phosphine Oxides. Synlett, 2017, 28, 1432-1436.	1.0	16
192	Asymmetric Synthesis of Glutamic Acid Derivatives by Silver-Catalyzed Conjugate Addition–Elimination Reactions. Organic Letters, 2017, 19, 4896-4899.	2.4	16
193	Siliconâ€based Bulky Groupâ^'Tuned Parallel Kinetic Resolution in Copperâ€Catalyzed 1,3â€Dipolar Additions. Advanced Synthesis and Catalysis, 2018, 360, 3002-3008.	2.1	16
194	Benefits of the Hydrophobic Surface for CH3NH3PbI3 Crystalline Growth towards Highly Efficient Inverted Perovskite Solar Cells. Molecules, 2019, 24, 2027.	1.7	16
195	PdCl ₂ (CH ₃ CN) ₂ -catalyzed regioselective C–H olefinations of 2-amino biaryls with vinylsilanes as unactivated alkenes. Chemical Communications, 2019, 55, 6229-6232.	2.2	16
196	Enantioselective Crossâ€Exchange between Câ^'I and Câ^'C Ïfâ€Bonds. Angewandte Chemie, 2019, 131, 6819	-6823.	16
197	Stereo- and regio-selective synthesis of silicon-containing diborylalkenes via platinum-catalyzed mono-lateral diboration of dialkynylsilanes. Chemical Communications, 2020, 56, 4188-4191.	2.2	16
198	Enantioselective Nickel-Catalyzed Si–C(sp ²) Bond Activation and Migratory Insertion to Aldehydes: Reaction Scope and Mechanism. ACS Catalysis, 2022, 12, 4571-4580.	5.5	16

#	Article	IF	CITATIONS
199	Efficient Synthesis ofl±,î²-Epoxy Carbonyl Compounds in Acetonitrile:Darzens Condensation of Aromatic Aldehydes with Ethyl Chloroacetate. Helvetica Chimica Acta, 2004, 87, 1958-1962.	1.0	15
200	"On Water―Catalytic Aldol Reaction between Isatins and Acetophenones: Interfacial Hydrogen Bonding and Enamine Mechanism. Journal of Organic Chemistry, 2019, 84, 7642-7651.	1.7	15
201	Highly bright perovskite light-emitting diodes based on quasi-2D perovskite film through synergetic solvent engineering. RSC Advances, 2019, 9, 8373-8378.	1.7	15
202	Copper-catalyzed enantioselective desymmetrization of prochiral tetrasubstituted siladiols: Access toward optically active silicon-stereogenic silylmethanols. Catalysis Communications, 2020, 138, 105950.	1.6	15
203	Organocatalytic Michael Addition of 1,3-Dicarbonyl Indane Compounds to Nitrostyrenes. Molecules, 2010, 15, 2551-2563.	1.7	14
204	(EtO)3SiH-Promoted Palladium-Catalyzed Isomerization of Olefins: Convenient Synthesis of Internal Alkenes from Terminal Alkenes. Synlett, 2014, 25, 417-422.	1.0	14
205	Siliconâ€Based Bulky Groupâ€Induced Remote Control and Conformational Preference in the Synthesis and Application of Isolable Atropisomeric Amides with Secondary Alcohol or Amine Moieties. Chemistry - an Asian Journal, 2014, 9, 1108-1115.	1.7	14
206	Palladiumâ€Catalyzed Ringâ€Opening of 2â€Alkylidenecyclobutanols: Stereoselective Synthesis of γ,δâ€Unsaturated Ketones by Câ^'C Bond Cleavage. Advanced Synthesis and Catalysis, 2018, 360, 411-415.	2.1	14
207	The luminescence properties of CsPb _x M _{1â^'x} Br ₃ perovskite nanocrystals transformed from Cs ₄ PbBr ₆ mediated by various divalent bromide MBr ₂ salts. Nanoscale, 2019, 11, 4008-4014.	2.8	14
208	Enhancing the stability and water resistance of CsPbBr3 perovskite nanocrystals by using tetrafluoride and zinc oxide as protective capsules. Journal of Materials Science, 2020, 55, 9739-9747.	1.7	14
209	Dimethylbut-2-ynedioate mediated esterification of acids via sp3 C–N bond cleavage of benzylic tertiary amines. Tetrahedron, 2012, 68, 8916-8923.	1.0	13
210	Influence of morphology of PCDTBT:PC71BM on the performance of solar cells. Applied Physics A: Materials Science and Processing, 2014, 114, 1361-1368.	1.1	13
211	A robust multifunctional ligand-controlled palladium-catalyzed carbonylation reaction in water. Chemical Communications, 2018, 54, 5074-5077.	2.2	13
212	A medium-bandgap small molecule donor compatible with both fullerene and unfused-ring nonfullerene acceptors for efficient organic solar cells. Journal of Materials Chemistry C, 2019, 7, 13396-13401.	2.7	13
213	Palladium-catalyzed gaseous CO-free carbonylative C–C bond activation of cyclobutanones. Organic Chemistry Frontiers, 2021, 8, 3398-3403.	2.3	13
214	Feasibility of Emission-Enhanced CsPbCl ₃ Quantum Dots Co-Doped with Mn ²⁺ and Er ³⁺ as Luminescent Downshifting Layers in Crystalline Silicon Solar Modules. ACS Applied Nano Materials, 2022, 5, 2522-2531.	2.4	13
215	Polymer-supported palladium–nickel bimetallic hydroxycarbonylation of styrene under aqueous–organic two-phase system. Applied Catalysis A: General, 2003, 253, 509-514.	2.2	12
216	Efficient Darzens condensation reactions of aromatic aldehydes catalyzed by polystyrene-supported phase-transfer catalyst. Journal of Molecular Catalysis A, 2004, 218, 157-160.	4.8	12

#	Article	IF	CITATIONS
217	Remarkable Substituent Effects on the Activation Energy of Silylene Insertion into Silicon-Chlorine Bonds. Chemistry - A European Journal, 2009, 15, 8605-8612.	1.7	12
218	Enantioselective Fluorination Reaction of β-Ketoesterâ€"Catalyzed Chiral Primary Amineâ€"Based Multifunctional Catalyst Systems. Synthetic Communications, 2014, 44, 101-114.	1.1	12
219	Construction of an all-substituted pyrrolidine derivative with multiple stereogenic centers and Betti-base-derived \hat{I}^3 -amino alcohols by [1,2]-Wittig rearrangement. RSC Advances, 2015, 5, 55819-55824.	1.7	12
220	A mechanistic study on multifunctional Fei-Phos ligand-controlled asymmetric palladium-catalyzed allylic substitutions. RSC Advances, 2016, 6, 70624-70631.	1.7	12
221	Enhancement of Upconversion Emissions of NaYF ₄ :Yb ³⁺ , Tm ³⁺ Nanoparticles by Ba ²⁺ Co-Doping. Journal of Nanoscience and Nanotechnology, 2018, 18, 7584-7589.	0.9	12
222	Synthesis of Functionalized Phenathridineâ€6 arbonitriles via Copper atalyzed Annulation of Vinyl Azides and NaN ₃ in the Presence of PhI(OAc) ₂ . ChemistrySelect, 2018, 3, 7354-7357.	0.7	12
223	Highly Efficient and Operational Stability Polymer Solar Cells Employing Nonhalogenated Solvents and Additives. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24075-24081.	4.0	12
224	Palladium-catalyzed tandem allylic substitution/cyclization and cascade hydrosilylated reduction: the influence of reaction parameters and hydrosilanes on the stereoselectivity. RSC Advances, 2018, 8, 22944-22951.	1.7	12
225	Tertiary amine-directed and involved carbonylative cyclizations through Pd/Cu-cocatalyzed multiple $Cae^{x}X$ (X = H or N) bond cleavage. Chemical Science, 2019, 10, 9292-9301.	3.7	12
226	CsPbBr ₃ @CsPbBr _{3–<i>x</i>} Cl <i>_x</i> Perovskite Core–Shell Heterojunction Nanowires via a Postsynthetic Method with HCl Gas. ACS Omega, 2020, 5, 11578-11584.	1.6	12
227	Interface energy level alignment and improved film quality with a hydrophilic polymer interlayer to improve the device efficiency and stability of all-inorganic halide perovskite light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 6743-6748.	2.7	12
228	Enantioselective palladium-catalyzed C(sp ²)–C(sp ²) Ïf bond activation of cyclopropenones by merging desymmetrization and (3 + 2) spiroannulation with cyclic 1,3-diketones. Chemical Science, 2021, 12, 13737-13743.	3.7	12
229	<scp>Palladiumâ€Catalyzed</scp> Câ€"C Bond Activation/Suzuki Reaction of Methylenecyclobutanes. Chinese Journal of Chemistry, 2021, 39, 1611-1615.	2.6	12
230	Ionic liquid-functionalized SBA-15 mesoporous material: efficient heterogeneous catalyst in versatile organic reactions. Open Chemistry, 2007, 5, 1073-1083.	1.0	11
231	Silver nanoparticles embedded in modified polyallylamine resin as efficient catalysts for alkyne–azide 1,3-dipolar cycloaddition in water. Catalysis Communications, 2016, 74, 110-114.	1.6	11
232	Inducing tunable host luminescence in Zn2GeO4 tetrahedral materials via doping Cr3+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 179-188.	2.0	11
233	An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells. Nano Research, 2018, 11, 2648-2657.	5.8	11
234	Silicon-mediated enantioselective synthesis of structurally diverse \hat{l}_{\pm} -amino acid derivatives. Science China Chemistry, 2020, 63, 1082-1090.	4.2	11

#	Article	IF	CITATIONS
235	Key Factors Governing the External Quantum Efficiency of Thermally Activated Delayed Fluorescence Organic Light-Emitting Devices: Evidence from Machine Learning. ACS Omega, 2022, 7, 7893-7900.	1.6	11
236	Four Novel Eremophilanolides from Ligularia sagitta. Helvetica Chimica Acta, 2004, 87, 1125-1129.	1.0	10
237	Efficient palladium/copper cocatalyzed C–N coupling reaction of unactivated aryl bromide or iodide with amino acid under microwave heating. Catalysis Communications, 2004, 5, 121-123.	1.6	10
238	Stereoelectronic Substituent Effects on Silylene Insertion into the Siâ^'Cl Bond. Organometallics, 2009, 28, 3591-3593.	1.1	10
239	Highly Facialselective Synthesis of Pyranose 1,3-Oxazines and Their Ring Opening with Nucleophiles: A Novel Entry to 2- <i>C</i> -Branched Glycosides. Organic Letters, 2011, 13, 5088-5091.	2.4	10
240	Chlorotrimethylsilane (TMSCI): an efficient silicon-based Lewis acid mediator in allylic alkylation using a diethylzinc reagent. RSC Advances, 2014, 4, 479-483.	1.7	10
241	Base-promoted [1,4]-Wittig rearrangement of chalcone-derived allylic ethers leading to aromatic \hat{l}^2 -benzyl ketones. RSC Advances, 2015, 5, 33818-33822.	1.7	10
242	Lewis Acidâ€Catalyzed Yneâ€Carbonyl Metathesis of Ynamides and Cyclobutanones: Facile Synthesis of Functionalized Alkylidenecyclobutanes. Asian Journal of Organic Chemistry, 2018, 7, 374-377.	1.3	10
243	A high-performance non-fullerene electron acceptor with bisalkylthiothiophene π-bridges for organic photovoltaics. Journal of Materials Chemistry C, 2019, 7, 14499-14503.	2.7	10
244	Highly efficient ironâ€catalyzed allylation of aromatic aldehydes with allyltriethoxysilane: oneâ€pot and practical synthesis of homoallyl ethers. Applied Organometallic Chemistry, 2008, 22, 177-180.	1.7	9
245	First syntheses of model long-chain trichloro [im-(trimethylsilyl) alkynyl] silanes suitable for self-assembled monolayers on silicon surfaces. Tetrahedron, 2009, 65, 3961-3966.	1.0	9
246	Insertion of Silylenes into Si–H and Si–Cl Bonds. Comparison of Mechanism and Substituent Effects. Organometallics, 2011, 30, 3311-3317.	1.1	9
247	Synergetic Effect of Different Carrier Dynamics in Pm6:Y6:ITIC-M Ternary Cascade Energy Level System. Polymers, 2021, 13, 2398.	2.0	9
248	1,1'-Binaphthalene-2-α-arylmethanol-2'-ols (Ar-BINMOLs) with Axial and sp3-Central Chiralityï⅓4šA Novel Chiral Ligands for Catalytic Asymmetric Transformations. Chinese Journal of Organic Chemistry, 2014, 34, 1255.	0.6	9
249	Organic Halide PEACl for Surface Passivation and Defects Suppression in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 12411-12420.	2.5	9
250	Sodium Borohydrideâ€Nickel Chlorideâ€Methanol Catalytic System for Regioselective Reduction of Electronâ€Rich Conjugated Dienes and Reductive Cleavage of Allyl Esters Involving Ï€â€Allylnickel Intermediates. Advanced Synthesis and Catalysis, 2011, 353, 3319-3324.	2.1	8
251	Fe-catalyzed cycloaddition of indoles and o-phthalaldehyde for the synthesis of benzo[b]carbazoles with TMSCl- or acid-responsive properties. RSC Advances, 2014, 4, 47272-47277.	1.7	8
252	Color-Tunable Organic Light Emitting Diodes for Deep Blue Emission by Regulating the Optical Micro-Cavity. Molecules, 2020, 25, 2867.	1.7	8

#	Article	IF	CITATIONS
253	Suppressed Halide Segregation and Defects in Wide Bandgap Perovskite Solar Cells Enabled by Doping Organic Bromide Salt with Moderate Chain Length. Journal of Physical Chemistry C, 2022, 126, 1711-1720.	1.5	8
254	Electrooptical characteristics of nanoscale and bulk long persistent phosphor SrAl ₂ O ₄ : Eu, Dy. Journal of Experimental Nanoscience, 2009, 4, 169-176.	1.3	7
255	Unexpected and powerful effect of chlorobenzene in direct palladium-catalyzed cascade Sonogashira–hydroarylation reaction. RSC Advances, 2015, 5, 8351-8354.	1.7	7
256	PMHSâ€Containing Semiâ€Penetrating Networks as Multifunctional Hydrosilanes for Highly Efficient Palladiumâ€Catalyzed Conjugate Reduction of Enones. ChemistrySelect, 2016, 1, 2400-2404.	0.7	7
257	Highly Efficient Palladiumâ€Catalyzed Allylic Alkylation of Cyanoacetamides with Controllable and Chemoselective Mono―and Double Substitutions. ChemCatChem, 2016, 8, 3466-3474.	1.8	7
258	Chiral Organosilicon Compounds. , 2017, , 145-194.		7
259	Palladium-catalyzed olefination of aryl/alkyl halides with trimethylsilyldiazomethane <i>via</i> carbene migratory insertion. Chemical Communications, 2018, 54, 12994-12997.	2.2	7
260	Solvent modification to suppress halide segregation in mixed halide perovskite solar cells. Journal of Materials Science, 2020, 55, 9787-9794.	1.7	7
261	Synergistic function of doping and ligand engineering to enhance the photostability and electroluminescence performance of CsPbBr ₃ quantum dots. Nanotechnology, 2021, 32, 325202.	1.3	7
262	Highly Efficient Heterobimetallic Ironâ€Magnesiumâ€HMPA–Catalyzed Michaelâ€type Friedel–Crafts Reactions of Indoles and Chalcones. Synthetic Communications, 2008, 38, 1638-1645.	1.1	6
263	An optical and structural investigation into CdTe nanocrystals embedded into the tellurium lithium borophosphate glass matrix. Science China: Physics, Mechanics and Astronomy, 2010, 53, 818-822.	2.0	6
264	Low-voltage, high transmittance fringe-field switching mode liquid crystal for monitor display. Liquid Crystals, 2014, 41, 755-760.	0.9	6
265	Bimetallic copper and zinc-catalyzed oxidative cycloaddition of 3-aminopyridazines and nitriles: a direct synthesis of 1,2,4-triazolo[1,5-b]pyridazines via C–N and N–N bond-forming process. RSC Advances, 2017, 7, 37208-37213.	1.7	6
266	Enantioselective synthesis of chiral acylsilanes by copper/HZNU-Phos-catalyzed asymmetric conjugate addition of diethyzinc to $\hat{l}\pm,\hat{l}^2$ -unsaturated acylsilanes. RSC Advances, 2017, 7, 54934-54938.	1.7	6
267	Cs2CO3-Initiated Trifluoro-Methylation of Chalcones and Ketones for Practical Synthesis of Trifluoromethylated Tertiary Silyl Ethers. Molecules, 2017, 22, 769.	1.7	6
268	With PBDB-T as the Donor, the PCE of Non-Fullerene Organic Solar Cells Based on Small Molecule INTIC Increased by 52.4%. Materials, 2020, 13, 1324.	1.3	6
269	Highly Diastereoselective Hydrosilaneâ€Assisted Rhodiumâ€Catalyzed Spiroâ€Type Cycloisomerization of Succinimide and Pyrazoloneâ€Based Functional 1,6â€Dienes. Chemistry - an Asian Journal, 2021, 16, 1730-1734.	1.7	6
270	Predicting the photon energy of quasi-2D lead halide perovskites from the precursor composition through machine learning. Nanoscale Advances, 2022, 4, 1632-1638.	2.2	6

#	Article	IF	CITATIONS
271	A New and Efficient Method for the Synthesis of $2,2\hat{a}\in^2$ -Dibromo- $1,1\hat{a}\in^2$ -binaphthyl Under Microwave Irradiation. Synthetic Communications, 2003, 33, 2763-2767.	1.1	5
272	The effect of annealing treatment on the performance of bulk heterojunction solar cells with donor and acceptor different weight ratios. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 1606-1610.	0.2	5
273	Probing the Strength Changes in Câ^'H and Câ^'C Bonds for Cation∫i€ Complexes. Journal of Physical Chemistry A, 2009, 113, 7097-7102.	1.1	5
274	Efficient Lewis acid-assisted BrÃ,nsted acid (LBA) catalysis in the iron-catalyzed Friedel-Crafts alkylation reaction of indoles. Open Chemistry, 2010, 8, 669-673.	1.0	5
275	The relative error caused by reproducibility in two-dimensional correlation spectroscopy. Journal of Molecular Structure, 2010, 974, 46-51.	1.8	5
276	Polyguanidine as a Highly Efficient and Reusable Catalyst for Knoevenagel Condensation Reactions in Water. Australian Journal of Chemistry, 2013, 66, 500.	0.5	5
277	Evolution of Cobalt Catalysis for Catalytic Construction of Siâ€H â€Containing Semiâ€Penetrating Networks: Updated Application in Nanosilverâ€Catalyzed Alkynylation of Paraformaldehyde. ChemistrySelect, 2016, 1, 4034-4043.	0.7	5
278	Graphene-enhanced platinum-catalysed hydrosilylation of amides and chalcones: a sustainable strategy allocated with in situ heterogenization and multitask application of H2PtCl6. RSC Advances, 2017, 7, 50729-50738.	1.7	5
279	Partial cation substitution of tunable blueâ€cyanâ€emitting Ba ₂ B ₂ O ₅ :Ce ³⁺ for nearâ€UV white LEDs. Journal of the American Ceramic Society, 2019, 102, 6213-6226.	1.9	5
280	Catalytic asymmetric cycloaddition of unsymmetrical EWG-activated alkenes to fully substituted pyrrolidines bearing three different carbonyl groups. Chemical Communications, 2019, 55, 14363-14366.	2.2	5
281	Asymmetric Disilylation of Spirocyclic Palladacyclopentanes via Tandem Heck/Câ^'H Activation of Aryl Iodides. Asian Journal of Organic Chemistry, 2021, 10, 2883-2887.	1.3	5
282	Catalytic asymmetric oxidative carbonylation-induced kinetic resolution of sterically hindered benzylamines to chiral isoindolinones. Chemical Communications, 2021, 57, 1778-1781.	2.2	5
283	Efficient Copper-Catalyzed Chemo Selective Conjugate Addition of Aliphatic Amines to \hat{l}_{\pm},\hat{l}^2 -Unsaturated Compounds in Water. Synlett, 2003, 2003, 2425-2427.	1.0	4
284	Isolation, Characterization and Crystal Structure of Natural Eremophilenolide from Ligularia sagitta. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2004, 59, 921-924.	0.3	4
285	Highly Efficient and Reusable Ionic Liquids for the Catalyzed HydroÂamination of Alkenes with Sulfonamides, Carbamates, and Carboxamides. Synthesis, 2009, 2009, 1969-1974.	1.2	4
286	Impact of Substituents Attached to <i>N</i> â€Heterocyclic Carbenes on the Catalytic Activity of Copper Complexes in the Reduction of Carbonyl Compounds with Triethoxysilane. Chinese Journal of Chemistry, 2009, 27, 2121-2124.	2.6	4
287	Influence of Yb3+ concentration on the upconversion luminescence of oxyfluoride material doped with Er3+. Science China: Physics, Mechanics and Astronomy, 2010, 53, 310-314.	2.0	4
288	Efficient Iron-Catalyzed Tsuji-Trost Coupling Reaction of Aromatic Allylic Amides through a sp \hat{A}^3 -Carbon-Nitrogen Breaking. Synlett, 2010, 2010, 1251-1254.	1.0	4

#	Article	IF	CITATIONS
289	The effect of metal electron cloud on the luminescence characteristics of organic ligands: An experimental and theoretical investigation. Science Bulletin, 2011, 56, 479-483.	1.7	4
290	Fast response fringeâ€field switching mode liquid crystal development for shutter glass 3D. Journal of the Society for Information Display, 2013, 21, 137-141.	0.8	4
291	Ar-BINMOL–Derived Salan–Cu(II) Complex–Catalyzed Silyl-Reformatsky Reaction of Aromatic Aldehydes. Synthetic Communications, 2014, 44, 2861-2869.	1.1	4
292	A new synthetic approach to polysubstituted-2-pyridones from enamino esters and diethyl ethoxymethylenemalonate under catalyst- and solvent-free conditions. Tetrahedron Letters, 2016, 57, 321-324.	0.7	4
293	A New Benchmark of Charges Storage in Single-Layer Organic Light-Emitting Diodes Based on Electrical and Optical Characteristics. Molecules, 2021, 26, 741.	1.7	4
294	Performance improvements in all-solution processed inverted QLEDs realized by inserting an electron blocking layer. Nanotechnology, 2021, 32, 335204.	1.3	4
295	Application of aromatic amideâ€derived atropisomers as chiral solvating agents for discrimination of optically active mandelic acid derivatives in ¹ H nuclear magnetic resonance spectroscopy. Magnetic Resonance in Chemistry, 2022, 60, 86-92.	1.1	4
296	Highly Efficient C-O Cross-Coupling Reactions with Unactivated Halides by Ligandless, Heterogeneous Raney Ni-Al Alloy/Copper (I) Salts. Synlett, 2003, 2003, 2071-2073.	1.0	3
297	Zirconium-Catalyzed Intermolecular Hydroamination of Unactivated Olefins. Synlett, 2009, 2009, 1167-1171.	1.0	3
298	Editorial [Hot Topic: Organosilicon-mediated Organic Synthesis/Organosilicon Chemistry (Guest) Tj ETQq0 0 0 rg	BT/Qverlo	ock 10 Tf 50 :
299	Investigation of the Mitsunobu Reaction of BINOL and Cinchona Alkaloids: Inversion or Retention of Configuration?. Synthetic Communications, 2014, 44, 3173-3182.	1.1	3
300	Transitionâ€Metalâ€Free Oxidative C(sp ^{)a^'H Hydroxylation of Terpyridines: A HOMOâ€Raising Strategy for the Construction of a New Superâ€Stable Terpyridine Chromophores. Chemistry - A European Journal, 2017, 23, 4055-4059.}	1.7	3
301	A series of novel BODIPY-fluorene copolymers: Synthesis, characterization, optical-electronic and nonlinear optical properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 217, 164-169.	2.0	3
302	Swollen-induced in-situ encapsulation of chiral silver catalysts in cross-linked polysiloxane elastomers: Homogeneous reaction and heterogeneous separation. Molecular Catalysis, 2021, 515, 111901.	1.0	3
303	The Improvement of the Performance of Sky-Blue OLEDs by Decreasing Interface Traps and Balancing Carriers with PSVA Treatment. Polymers, 2022, 14, 622.	2.0	3
304	Improved UV sensitivity and charge transport in PTB7-Th:PC $<$ sub $>71sub>BM solar cells doped with cadmium selenide quantum dots. Sustainable Energy and Fuels, 0, , .$	2.5	3
305	Transition Metal-based Lewis Acid Catalyzed Ring Opening of Epoxides Using Amines under Solvent-Free Conditions. Synlett, 2004, 2004, 0846-0850.	1.0	2
306	Ionic Liquid Functionalized SBA-15 Promoted Rapid and Facile Aza-Michael Reaction. Letters in Organic Chemistry, 2007, 4, 242-245.	0.2	2

#	Article	IF	Citations
307	Energy transfer in organic multilayer quantum well structure and its application to OLEDs. Optoelectronics Letters, 2007, 3, 99-102.	0.4	2
308	A sharp challenge to the traditional method of determining the luminescence phase in solid state cathodoluminescence. Journal of Applied Physics, 2009, 106, 023513.	1.1	2
309	The effect of PCBM doping on the electroluminescent performance of organic lightâ€emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2317-2320.	0.8	2
310	The origin of the decreasing basicity from monofunctional alkoxysilane to tetrafunctional alkoxysilane: A combined IR and theoretical study. Journal of Molecular Structure, 2015, 1089, 216-221.	1.8	2
311	Investigation of excitedâ€state dynamics upon both photoâ€excitation and electroâ€excitation of thermally activated delayed fluorescent molecules. Journal of the Society for Information Display, 2018, 26, 694-699.	0.8	2
312	Biphenyl Triarylamine Hole Transport Material for Highly Efficient and Low-Temperature Solution-Processed $\langle i \rangle p < i \rangle a \in (i) a \in$	0.9	2
313	Convenient Synthesis of 2-(2,2-Difluoroethoxy)-6-(trifluoromethyl)-benzenesulfonyl Chloride, A Key Building Block of Penoxsulam. Synthesis, 2019, 51, 4249-4252.	1.2	2
314	Optical Capacitance/Conductance-Voltage Characteristics of Stored Charges in Organic Light-Emitting Diodes. Molecules, 2020, 25, 2818.	1.7	2
315	Highly Construction of Tetrasubstituted Silylallenes via 1,4-Hydrosilylation of 1,3-Enynes. Chinese Journal of Organic Chemistry, 2021, 41, 4515.	0.6	2
316	A Compact Electron Transport Layer Using a Heated Tinâ€Oxide Colloidal Solution for Efficient Perovskite Solar Cells. Solar Rrl, 0, , 2100794.	3.1	2
317	Device performance improvements in all-inorganic perovskite light-emitting diodes: the role of binary ammonium cation terminals. Physical Chemistry Chemical Physics, 2022, 24, 6208-6214.	1.3	2
318	Stereo-divergent synthesis of silyl-enynes via palladium-catalyzed coupling of alkynes and iodosilanes. Organic Chemistry Frontiers, 0, , .	2.3	2
319	Efficient Lewis Base-Catalyzed Conjugate Addition of Azide Ion to Cyclic Enones in Water. Synlett, 2003, 2003, 2246-2248.	1.0	1
320	Investigation of the effects of MoO3 buffer layer on charge carrier injection and extraction by capacitanceâ€"voltage measurement. Science Bulletin, 2014, 59, 747-753.	1.7	1
321	A Novel and Effective Ni Complex Catalyst System for the Coupling Reactions of Carbon Dioxide and Epoxides ChemInform, 2003, 34, no.	0.1	0
322	A New and Efficient Method for the Synthesis of 2,2 $\hat{a}\in^2$ -Dibromo-1,1 $\hat{a}\in^2$ -binaphthyl under Microwave Irradiation ChemInform, 2003, 34, no.	0.1	0
323	Highly Efficient Aza-Michael Reactions of Enones with Carbamates Using a Combination of Quaternary Ammonium Salts and BF3·OEt2as a Catalyst. Synlett, 2003, 2003, 2337-2340.	1.0	0
324	An Efficient and Inexpensive Catalyst System for the Aza-Michael Reactions of Enones with Carbamates ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
325	The First Ionic Liquids Promoted Conjugate Addition of Azide Ion to $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carbonyl Compounds ChemInform, 2004, 35, no.	0.1	0
326	Efficient Synthesis of Chlorohydrins: Ionic Liquid Promoted Ring-Opening Reaction of Epoxides and TMSCI ChemInform, 2004, 35, no.	0.1	0
327	Highly Efficient Phosphine-Catalyzed Aza-Michael Reactions of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Compounds with Carbamates in the Presence of TMSCl ChemInform, 2004, 35, no.	0.1	0
328	Transition-Metal-Based Lewis Acid Catalysis of Aza-Type Michael Additions of Amines to α,β-Unsaturated Electrophiles in Water ChemInform, 2004, 35, no.	0.1	0
329	Improved Protocol for the Three-Component Biginelli Reactions and Biginelli-Like Mannich Reactions of Carbamates, Aldehydes, and Ketones ChemInform, 2005, 36, no.	0.1	0
330	Transition Metal Salt Catalyzed Direct Three-Component Mannich Reactions of Aldehydes, Ketones, and Carbamates: Efficient Synthesis of N-Protected ?-Aryl-?-Amino Ketone Compounds ChemInform, 2005, 36, no.	0.1	0
331	Efficient Coupling Reactions of Arylalkynes and Aldehydes Leading to the Synthesis of Enones ChemInform, 2005, 36, no.	0.1	0
332	A Catalytic Enantioselective Aza-Michael Reaction: Novel Protocols for Asymmetric Synthesis of ?-Amino Carbonyl Compounds. ChemInform, 2005, 36, no.	0.1	0
333	Highly Efficient KF/Al2O3-Catalyzed Versatile Hetero-Michael Addition of Nitrogen, Oxygen, and Sulfur Nucleophiles to $\hat{l}\pm,\hat{l}^2$ -Ethylenic Compounds ChemInform, 2005, 36, no.	0.1	0
334	Efficient and Mild Benzoin Condensation Reaction Catalyzed by Simple 1-N-Alkyl-3-methylimidazolium Salts ChemInform, 2005, 36, no.	0.1	0
335	Investigation of spectrum blue shift in organic quantum well electroluminescent devices. Optoelectronics Letters, 2007, 3, 37-39.	0.4	0
336	Metal-Free Relay Oxidation: Valuable Synthesis of Acylsilane and Ketones under Aerobic Oxidation. Synlett, 2011, 2011, 3031-3035.	1.0	0
337	Front Cover Picture: Siliconâ€based Bulky Groupâ^'Tuned Parallel Kinetic Resolution in Copperâ€Catalyzed 1,3â€Dipolar Additions (Adv. Synth. Catal. 16/2018). Advanced Synthesis and Catalysis, 2018, 360, 2975-2975.	2.1	0
338	3.5: Investigation of excitedâ€state dynamics upon both photo―and electroâ€excitation of thermally activated delayed fluorescent molecules. Digest of Technical Papers SID International Symposium, 2018, 49, 29-34.	0.1	0
339	Frontispiz: Controllable Siâ^'C Bond Activation Enables Stereocontrol in the Palladium atalyzed [4+2] Annulation of Cyclopropenes with Benzosilacyclobutanes. Angewandte Chemie, 2020, 132, .	1.6	0
340	Frontispiece: Controllable Siâ^'C Bond Activation Enables Stereocontrol in the Palladiumâ€Catalyzed [4+2] Annulation of Cyclopropenes with Benzosilacyclobutanes. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0