Igor E Deyev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3373244/publications.pdf Version: 2024-02-01

ICOR F DEVEN

#	Article	IF	CITATIONS
1	Activity-dependent conformational transitions of the insulin receptor–related receptor. Journal of Biological Chemistry, 2021, 296, 100534.	1.6	7
2	FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor. Biosensors, 2021, 11, 340.	2.3	12
3	Probing Structure and Function of Alkali Sensor IRR with Monoclonal Antibodies. Biomolecules, 2020, 10, 1060.	1.8	4
4	The Value of pH Sensors in Maintaining Homeostasis of the Nervous System. Russian Journal of Bioorganic Chemistry, 2020, 46, 506-519.	0.3	9
5	ѕMet receptor can be activated by extracellular alkaline medium. Journal of Receptor and Signal Transduction Research, 2019, 39, 67-72.	1.3	4
6	The dimeric ectodomain of the alkali-sensing insulin receptor–related receptor (ectoIRR) has a droplike shape. Journal of Biological Chemistry, 2019, 294, 17790-17798.	1.6	10
7	Optimization of Heterologous Expression of Insulin Receptor-Related Receptor Ectodomain. Doklady Biochemistry and Biophysics, 2019, 485, 101-103.	0.3	1
8	The Hybrid Protein of the Alkaline Sensor IRR and the Fluorescent Protein GFP Retains the Functional Activity of the Receptor. Russian Journal of Bioorganic Chemistry, 2019, 45, 179-182.	0.3	5
9	Autophosphorylation of Orphan Receptor ERBB2 Can Be Induced by Extracellular Treatment with Mildly Alkaline Media. International Journal of Molecular Sciences, 2019, 20, 1515.	1.8	9
10	DeSUMOylation switches Kaiso from activator to repressor upon hyperosmotic stress. Cell Death and Differentiation, 2018, 25, 1938-1951.	5.0	20
11	Behavioral Characteristics of Mice with Knockout of the IRR Alkali Sensor Gene. Neuroscience and Behavioral Physiology, 2018, 48, 483-487.	0.2	3
12	Genetically encoded fluorescent indicators for live cell pH imaging. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2924-2939.	1.1	47
13	Profile of Gene Expression in the Kidneys of Mice with the insrr Gene Knockout. Russian Journal of Bioorganic Chemistry, 2018, 44, 256-260.	0.3	0
14	Alkaline pH induces IRR-mediated phosphorylation of IRS-1 and actin cytoskeleton remodeling in a pancreatic beta cell line. Biochimie, 2017, 138, 62-69.	1.3	23
15	Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor. Biochemical and Biophysical Research Communications, 2017, 493, 1518-1521.	1.0	22
16	Generation of photoactivatable fluorescent protein from photoconvertible ancestor. Russian Journal of Bioorganic Chemistry, 2017, 43, 340-343.	0.3	0
17	Production and immunochemical characterization of monoclonal antibody to IRR ectodomain. Russian Journal of Bioorganic Chemistry, 2017, 43, 653-657.	0.3	4
18	Site-Directed Mutagenesis of the Fibronectin Domains in Insulin Receptor-Related Receptor. International Journal of Molecular Sciences, 2017, 18, 2461.	1.8	3

Igor E Deyev

#	Article	IF	CITATIONS
19	BODIPY-based dye for no-wash live-cell staining and imaging. BioTechniques, 2017, 63, 77-80.	0.8	13
20	Genetic link between IRR-receptor and Ly6/PLAUR protein. Russian Journal of Bioorganic Chemistry, 2016, 42, 449-452.	0.3	7
21	Mapping of alkali-sensing sites of the insulin receptor-related receptor. The role of L2 and fibronectin domains. Biochimie, 2015, 111, 1-9.	1.3	18
22	Structural and functional analyses of the sixth site of neurexin alternative splicing. Doklady Biochemistry and Biophysics, 2015, 463, 239-242.	0.3	3
23	Analysis of structural determinants of alkali sensor IRR positive cooperativity. Doklady Biochemistry and Biophysics, 2013, 450, 160-163.	0.3	7
24	Structural Determinants of the Insulin Receptor-related Receptor Activation by Alkali. Journal of Biological Chemistry, 2013, 288, 33884-33893.	1.6	23
25	Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid–base balance. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2170-2175.	1.1	39
26	Insulin Receptor-Related Receptor as an Extracellular Alkali Sensor. Cell Metabolism, 2011, 13, 679-689.	7.2	92
27	Association of adaptor protein TRIP8b with clathrin. Journal of Neurochemistry, 2011, 118, 988-998.	2.1	4
28	Regulation of CIRL-1 proteolysis and trafficking. Biochimie, 2010, 92, 418-422.	1.3	21
29	Association of the subunits of the calcium-independent receptor of $\hat{I}\pm$ -latrotoxin. Biochemical and Biophysical Research Communications, 2010, 402, 658-662.	1.0	3
30	Novel GPS-containing G protein-coupled receptor from Monosiga brevicollis. Doklady Biochemistry and Biophysics, 2009, 427, 191-194.	0.3	0
31	Dissociation of the Subunits of the Calcium-Independent Receptor of α-Latrotoxin as a Result of Two-Step Proteolysis. Biochemistry, 2009, 48, 3230-3238.	1.2	44
32	Analysis of proteins interacting with TRIP8b adapter. Biochemistry (Moscow), 2008, 73, 644-651.	0.7	16
33	Interaction of calcium-independent latrotoxin receptor with intracellular adapter protein TRIP8b. Doklady Biochemistry and Biophysics, 2007, 414, 149-151.	0.3	13
34	Effect of changes in ambient pH on phosphorylation of cellular proteins. Doklady Biochemistry and Biophysics, 2006, 408, 184-187.	0.3	17
35	Title is missing!. Molecular Biology, 2003, 37, 125-131.	0.4	3
36	Transcription Regulation of Human oct-1 Gene Requires Involvement of Two Promoters. Russian Journal of Genetics, 2003, 39, 216-221.	0.2	0

IGOR E DEYEV

#	Article	IF	CITATIONS
37	Regulation of oct-1 gene transcription is different in lymphoid and non-lymphoid cells. Biochimie, 2003, 85, 715-718.	1.3	5
38	Tissue-specific isoforms of the ubiquitous transcription factor Oct-1. Molecular Genetics and Genomics, 2001, 266, 239-245.	1.0	32
39	Isoforms of Transcription Factor Oct-1 Synthesized in Lymphocytes. Molecular Biology, 2001, 35, 691-698.	0.4	4
40	The Tissue-Specific Splicing of 5"-Terminal Exons of the Oct-1 Gene. Molecular Biology, 2001, 35, 28-34.	0.4	4