Yong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3373088/publications.pdf

Version: 2024-02-01

309 papers 9,920 citations

53 h-index 81 g-index

312 all docs 312 docs citations

312 times ranked

5578 citing authors

#	Article	IF	CITATIONS
1	Review of femtosecond laser direct writing fiber-optic structures based on refractive index modification and their applications. Optics and Laser Technology, 2022, 146, 107473.	2.2	28
2	Novel OPD demodulation method based on intercepted spectrum with an integral period. Optics Communications, 2022, 505, 127574.	1.0	1
3	In-situ DNA detection with an interferometric-type optical sensor based on tapered exposed core microstructured optical fiber. Sensors and Actuators B: Chemical, 2022, 351, 130942.	4.0	37
4	Review of femtosecond laser machining technologies for optical fiber microstructures fabrication. Optics and Laser Technology, 2022, 147, 107628.	2.2	26
5	Optical fiber sensor based on helical Fibers: A review. Measurement: Journal of the International Measurement Confederation, 2022, 188, 110400.	2.5	6
6	Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements. Sensors and Actuators B: Chemical, 2022, 353, 131134.	4.0	44
7	Highly sensitive salinity sensor based on Mach-Zehnder interferometer with double-C fiber. Fundamental Research, 2022, 2, 296-302.	1.6	8
8	A plug-and-play optical fiber SPR sensor for simultaneous measurement of glucose and cholesterol concentrations. Biosensors and Bioelectronics, 2022, 198, 113798.	5.3	44
9	Simultaneous Measurement of Seawater Salinity and Temperature With Composite Fiber-Optic Interferometer. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	2.4	11
10	Simultaneous Measurement of Temperature and Relative Humidity Using Cascaded C-shaped Fabry-Perot interferometers. Journal of Lightwave Technology, 2022, 40, 1209-1215.	2.7	24
11	Hybrid Fiber-Optic Sensor for Seawater Temperature and Salinity Simultaneous Measurements. Journal of Lightwave Technology, 2022, 40, 880-886.	2.7	32
12	Plug-in label-free optical fiber DNA hybridization sensor based on C-type fiber Vernier effect. Sensors and Actuators B: Chemical, 2022, 354, 131212.	4.0	26
13	Research on temperature sensing characteristics of fiber side-open cavity structure. Measurement: Journal of the International Measurement Confederation, 2022, 190, 110741.	2.5	1
14	Surface Plasmon Resonance Optical Fiber Sensor for Refractive Index Detection Without Temperature Crosstalk. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-6.	2.4	9
15	One dimensional vector curvature sensor based on 2-core fiber offset structure. Measurement: Journal of the International Measurement Confederation, 2022, 193, 110964.	2.5	7
16	A displacement sensor based on balloon-like optical fiber structure. Sensors and Actuators A: Physical, 2022, 338, 113469.	2.0	5
17	Plug-in optical fiber SPR biosensor for lung cancer gene detection with temperature and pH compensation. Sensors and Actuators B: Chemical, 2022, 359, 131596.	4.0	40
18	High-sensitivity salinity sensor based on etched C-type micro-structured fiber sensing structure. Sensors and Actuators A: Physical, 2022, 339, 113518.	2.0	16

#	Article	IF	CITATIONS
19	Surface plasmon resonance optical fiber sensor for relative humidity detection without temperature crosstalk. Optics and Laser Technology, 2022, 150, 107951.	2.2	18
20	Optical fiber Fabry-Perot silica-microprobe for a gas pressure sensor. Optics and Laser Technology, 2022, 152, 108106.	2.2	9
21	A Portable Optical Fiber Sensing Platform Based on Fluorescent Carbon Dots for Realâ€Time pH Detection. Advanced Materials Interfaces, 2022, 9, .	1.9	10
22	Reflective-Type Multiparameter Sensor Based on a Paired Helical Fiber Gratings and a Trapezoid-Like Microcavity. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	2.4	5
23	High Precision Optical Path Difference Compensation Method Based on Three- Parameter Cosine Fitting Method. Journal of Lightwave Technology, 2022, 40, 4911-4918.	2.7	4
24	Temperature Compensated Magnetic Field Sensor Using Magnetic Fluid Filled Exposed Core Microstructure Fiber. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	2.4	15
25	Optical fiber SPR biosensor based on gold nanoparticle amplification for DNA hybridization detection. Talanta, 2022, 247, 123599.	2.9	29
26	Multichannel Fiber Optic SPR Sensors: Realization Methods, Application Status, and Future Prospects. Laser and Photonics Reviews, 2022, 16, .	4.4	34
27	Simultaneous measurement of salinity and temperature based on Fabry-Perot interference and anti-resonance effect. Sensors and Actuators B: Chemical, 2022, 369, 132248.	4.0	13
28	Fiber-optic sensors based on Vernier effect. Measurement: Journal of the International Measurement Confederation, 2021, 167, 108451.	2.5	122
29	3D printed castle style Fabry-Perot microcavity on optical fiber tip as a highly sensitive humidity sensor. Sensors and Actuators B: Chemical, 2021, 328, 128981.	4.0	56
30	Characteristics of a new multi-channel sensing device based on C-type photonic crystal fibers. Optics and Laser Technology, 2021, 134, 106622.	2.2	17
31	A novel high accuracy optical path difference compensation method based on phase difference technology. Optics and Lasers in Engineering, 2021, 137, 106367.	2.0	12
32	Electrically tunable optical fiber device based on hollow-core fiber infiltrated with liquid crystal. Sensors and Actuators A: Physical, 2021, 318, 112500.	2.0	11
33	Research on Characteristics of Wedge-Shaped Open-Cavity Mach–Zehnder Sensing Structure for Seawater Temperature. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-7.	2.4	7
34	A Fiber Ring Cavity Laser Temperature Sensor Based on Polymer-Coated No-Core Fiber as Tunable Filter. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	2.4	5
35	Magnetic Field Measurement Method Based on the Magneto-Volume Effect of Hollow Core Fiber Filled With Magnetic Fluid. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	2.4	5
36	Simultaneous Measurement of Temperature and Pressure Based on Ring-Shaped Sensing Structure With Polymer Coated No-Core Fiber. IEEE Sensors Journal, 2021, 21, 22783-22791.	2.4	7

#	Article	IF	CITATIONS
37	High-Sensitivity Temperature Sensor Based on Reflective Solc-Like Filter With Cascaded Polarization Maintaining Fibers. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	2.4	6
38	High-Sensitivity and Low-Loss Vector Magnetic Field Sensor Based on the C-Type Optical Fiber. IEEE Transactions on Magnetics, 2021, 57, 1-8.	1.2	4
39	A review of specialty fiber biosensors based on interferometer configuration. Journal of Biophotonics, 2021, 14, e202100068.	1.1	57
40	High-sensitivity special open-cavity Mach–Zehnder structure for salinity measurement based on etched double-side hole fiber. Optics Letters, 2021, 46, 2714.	1.7	12
41	Optical Fiber Optofluidic Bioâ€Chemical Sensors: A Review. Laser and Photonics Reviews, 2021, 15, 2000526.	4.4	59
42	Dynamic analysis of microparticle behavior in quad-beam optic-fiber optical tweezers. Journal of Optics (India), 2021, 50, 656.	0.8	1
43	An effective method for size-controlled gold nanoparticles synthesis with nonthermal microplasma. Nanotechnology, 2021, 32, 395603.	1.3	0
44	Optical fiber sensors for glucose concentration measurement: A review. Optics and Laser Technology, 2021, 139, 106981.	2.2	71
45	In Situ Temperature-Compensated DNA Hybridization Detection Using a Dual-Channel Optical Fiber Sensor. Analytical Chemistry, 2021, 93, 10561-10567.	3.2	51
46	Ultra-Broadband OAM Mode Generator Based on a Phase-Modulated Helical Grating Working at a High Radial-Order of Cladding Mode. IEEE Journal of Quantum Electronics, 2021, 57, 1-7.	1.0	10
47	Temperature Sensing Characteristics of an MKR in a Microfiber Taper Based on Mechanisms of Interference and Resonance with Vernier Effect. Optics and Lasers in Engineering, 2021, 143, 106617.	2.0	15
48	Low-cost high-performance temperature sensor based on unsymmetrical U-shaped microfiber. Optical Fiber Technology, 2021, 65, 102597.	1.4	4
49	Low temperature crosstalk optical fiber Fabry-Perot interferometers for highly sensitivity strain measurement based on parallel Vernier effect. Optical Fiber Technology, 2021, 67, 102700.	1.4	5
50	Optical Fiber SPR Sensor With Surface Ion Imprinting for Highly Sensitive and Highly Selective Ni ²⁺ Detection. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-6.	2.4	11
51	Reflective Highly Sensitive Fabry–Perot Magnetic Field Sensor Based on Magneto-Volume Effect of Magnetic Fluid. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-6.	2.4	18
52	Lateral offset optical fiber modal interferometer sensor for simultaneous measurement of seawater temperature and salinity. Optical Fiber Technology, 2021, 67, 102737.	1.4	10
53	Reflective Optical Fiber Sensor Based on Dual Fabry Perot Cavities for Simultaneous Measurement of Salinity and Temperature. IEEE Sensors Journal, 2021, 21, 27495-27502.	2.4	16
54	Study on the Temperature and Salinity Sensing Characteristics of Multifunctional Reflective Optical Fiber Probe. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	2.4	10

#	Article	IF	CITATIONS
55	An optical fiber sensor for the simultaneous measurement of pressure and position based on a pair of fiber Bragg gratings. Optical Fiber Technology, 2021, 67, 102742.	1.4	10
56	All Fiber Mach–Zehnder Interferometer Based on Intracavity Micro-Waveguide for a Magnetic Field Sensor. Applied Sciences (Switzerland), 2021, 11, 11569.	1.3	0
57	Magnetic field sensor based on ring WGM resonator infiltrated with magnetic fluid. Journal of Magnetism and Magnetic Materials, 2020, 493, 165701.	1.0	23
58	High sensitivity seawater temperature sensor based on no-core optical fiber. Optical Fiber Technology, 2020, 54, 102115.	1.4	24
59	In-line microfiber MZI operating at two sides of the dispersion turning point for ultrasensitive RI and temperature measurement. Sensors and Actuators A: Physical, 2020, 301, 111754.	2.0	25
60	Large measurement range and high sensitivity temperature sensor with FBG cascaded Mach-Zehnder interferometer. Optics and Laser Technology, 2020, 125, 106034.	2.2	27
61	Ultra-sensitive seawater temperature sensor using an FBG-cascaded microfiber MZI operating at dispersion turning point. Optics and Laser Technology, 2020, 132, 106458.	2.2	27
62	Applications of fiber-optic biochemical sensor in microfluidic chips: A review. Biosensors and Bioelectronics, 2020, 166, 112447.	5.3	116
63	All-fiber all-optical quantitative polymerase chain reaction (qPCR). Sensors and Actuators B: Chemical, 2020, 323, 128681.	4.0	27
64	Sagnac Interferometer Temperature Sensor Based on Microstructured Optical Fiber Filled with Glycerin. Sensors and Actuators A: Physical, 2020, 314, 112245.	2.0	36
65	High-sensitivity salinity measurement sensor based on no-core fiber. Sensors and Actuators A: Physical, 2020, 305, 111947.	2.0	31
66	Optical fiber quantum biosensor based on surface plasmon polaritons for the label-free measurement of protein. Sensors and Actuators B: Chemical, 2020, 316, 128097.	4.0	17
67	Review of no-core optical fiber sensor and applications. Sensors and Actuators A: Physical, 2020, 313, 112160.	2.0	47
68	Ultra-high sensitivity SPR fiber sensor based on multilayer nanoparticle and Au film coupling enhancement. Measurement: Journal of the International Measurement Confederation, 2020, 164, 108083.	2.5	51
69	RI sensing system with high sensitivity and large measurement range using a microfiber MZI and a photonic crystal fiber MZI. Measurement: Journal of the International Measurement Confederation, 2020, 156, 107603.	2.5	21
70	Whispering Gallery Mode Optical Microresonators: Structures and Sensing Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900825.	0.8	27
71	Simultaneous measurement of temperature and relative humidity by compact Mach-Zehnder interferometer and Fabry-Perot interferometer. Measurement: Journal of the International Measurement Confederation, 2020, 155, 107499.	2.5	33
72	Beating the shot-noise limit with optical fiber quantum sensors for salinity measurement. Sensors and Actuators B: Chemical, 2020, 320, 128353.	4.0	20

#	Article	IF	CITATIONS
73	Multifunctional optical fiber sensor for simultaneous measurement of temperature and salinity. Optics Letters, 2020, 45, 6631.	1.7	37
74	Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor. Measurement: Journal of the International Measurement Confederation, 2019, 148, 106792.	2.5	111
75	Current status of optical fiber biosensor based on surface plasmon resonance. Biosensors and Bioelectronics, 2019, 142, 111505.	5.3	322
76	Temperature insensitive air-cavity Fabry-Perot gas pressure sensor based on core-offset fusion of hollow-core fibers. Sensors and Actuators A: Physical, 2019, 298, 111589.	2.0	24
77	Cascaded FPI/LPFG interferometer for high-precision simultaneous measurement of strain and temperature. Optical Fiber Technology, 2019, 53, 102025.	1.4	18
78	Reflex optical fiber probe for simultaneous determination of seawater salinity and temperature by surface plasmon resonance. Instrumentation Science and Technology, 2019, 47, 374-388.	0.9	25
79	Review of optical fiber Mach–Zehnder interferometers with micro-cavity fabricated by femtosecond laser and sensing applications. Optics and Lasers in Engineering, 2019, 117, 7-20.	2.0	75
80	High sensitive applied load measurement using optical fiber tapered-loop probe with SPR effect. Optics and Laser Technology, 2019, 114, 95-102.	2.2	15
81	Simultaneous measurement of RH and temperature based on FBG and balloon-like sensing structure with inner embedded up-tapered MZI. Measurement: Journal of the International Measurement Confederation, 2019, 146, 1-8.	2.5	24
82	Humidity sensor based on unsymmetrical U-shaped twisted microfiber coupler with wide detection range. Sensors and Actuators B: Chemical, 2019, 290, 406-413.	4.0	25
83	Novel Fiber Grating for Sensing Applications. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800820.	0.8	15
84	Highly-sensitive phase-interrogated RI sensor based on twin-core fiber with inherent noise suppression. Optics and Lasers in Engineering, 2019, 120, 66-70.	2.0	6
85	A real-time fiber mode demodulation method enhanced by convolution neural network. Optical Fiber Technology, 2019, 50, 139-144.	1.4	16
86	Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sensing properties to volatile organic compounds. Journal of Alloys and Compounds, 2019, 793, 24-30.	2.8	87
87	Multimode interferometer based on no-core fiber with GQDs-PVA composite coating for relative humidity sensing. Optical Fiber Technology, 2019, 48, 242-247.	1.4	9
88	In-fiber Surface Plasmon Resonance Temperature Sensor Based on PDMS Infiltrated Hollow Core Fiber. , 2019, , .		0
89	Broadband generation of the first-order OAM modes in two-mode fiber by offset splicing and fiber rotating technology. Optics and Laser Technology, 2019, 112, 436-441.	2.2	12
90	Ultrasensitive long-period gratings sensor works near dispersion turning point and mode transition region by optimally designing a photonic crystal fiber. Optics and Laser Technology, 2019, 112, 261-268.	2.2	10

#	Article	IF	CITATIONS
91	Method for Generating a Discrete Fracture Network from Microseismic Data and its Application in Analyzing the Permeability of Rock Masses: a Case Study. Rock Mechanics and Rock Engineering, 2019, 52, 3133-3155.	2.6	30
92	Relative humidity sensor based on hollow core fiber filled with GQDs-PVA. Sensors and Actuators B: Chemical, 2019, 284, 96-102.	4.0	165
93	Theoretical analysis of seawater depth and temperature measurement with C-type micro-structured fiber grating. Optical Fiber Technology, 2019, 47, 133-140.	1.4	10
94	Relative humidity sensor based on Vernier effect with GQDs-PVA un-fully filled in hollow core fiber. Sensors and Actuators A: Physical, 2019, 285, 329-337.	2.0	49
95	Simultaneous measurement of refractive index and temperature based on a long period fiber grating inscribed in a photonic crystal fiber with an electric-arc discharge. Instrumentation Science and Technology, 2019, 47, 185-194.	0.9	12
96	U-shaped microfiber coupler coated with polyvinyl alcohol film for highly sensitive humidity detection. Sensors and Actuators A: Physical, 2019, 285, 628-636.	2.0	18
97	A High-Sensitivity Magnetic Field Sensor with a Simple Structure. , 2019, , .		0
98	One-Step Synthesis of Au/SnO2/RGO Nanocomposites and Their VOC Sensing Properties. IEEE Nanotechnology Magazine, 2018, 17, 212-219.	1.1	144
99	Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay. Sensors and Actuators B: Chemical, 2018, 263, 312-318.	4.0	55
100	Optical fiber low-frequency vibration sensor based on Butterfly-Shape Mach-Zehnder Interferometer. Sensors and Actuators A: Physical, 2018, 273, 107-112.	2.0	26
101	Optical fiber axial contact force sensor based on bubble-expanded Fabry–Pérot interferometer. Sensors and Actuators A: Physical, 2018, 272, 318-324.	2.0	14
102	Simultaneous measurement of humidity and temperature using a polyvinyl alcohol tapered fiber bragg grating. Instrumentation Science and Technology, 2018, 46, 463-474.	0.9	15
103	Study of the Rock Mass Failure Process and Mechanisms During the Transformation from Open-Pit to Underground Mining Based on Microseismic Monitoring. Rock Mechanics and Rock Engineering, 2018, 51, 1473-1493.	2.6	39
104	Smart hydrogel-based optical fiber SPR sensor for pH measurements. Sensors and Actuators B: Chemical, 2018, 261, 226-232.	4.0	141
105	Determination of refractive index by a U-shaped multimode fiber sensor. Instrumentation Science and Technology, 2018, 46, 490-501.	0.9	11
106	Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid. Optical Fiber Technology, 2018, 41, 1-6.	1.4	48
107	Review of salinity measurement technology based on optical fiber sensor. Sensors and Actuators B: Chemical, 2018, 260, 86-105.	4.0	248
108	Sensitivity-optimized long-period fiber gratings for refractive index and temperature sensing. Instrumentation Science and Technology, 2018, 46, 435-449.	0.9	10

#	Article	IF	Citations
109	Novel near-infrared spectrum analysis tool: Synergy adaptive moving window model based on immune clone algorithm. Analytica Chimica Acta, 2018, 1000, 109-122.	2.6	7
110	Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber. Sensors and Actuators A: Physical, 2018, 270, 162-169.	2.0	117
111	High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber. Sensors and Actuators B: Chemical, 2018, 269, 103-109.	4.0	88
112	High sensitivity temperature sensor based on fiber air-microbubble Fabry-Perot interferometer with PDMS-filled hollow-core fiber. Sensors and Actuators A: Physical, 2018, 275, 60-66.	2.0	82
113	Long-period fiber grating sensor induced by electric-arc discharge for dual-parameter measurement. Instrumentation Science and Technology, 2018, 46, 1-11.	0.9	13
114	A voltage measurement system based on fiber loop cavity ring-down technology using polymer dispersed liquid crystal film as sensing device. Transactions of the Institute of Measurement and Control, 2018, 40, 2303-2309.	1.1	4
115	Graphene-based optical fiber ammonia gas sensor. Instrumentation Science and Technology, 2018, 46, 12-27.	0.9	15
116	High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber. Instrumentation Science and Technology, 2018, 46, 253-264.	0.9	22
117	Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities. Lab on A Chip, 2018, 18, 57-74.	3.1	96
118	Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber. Sensors and Actuators B: Chemical, 2018, 258, 822-828.	4.0	151
119	Tapered Hollowâ€Core Fiber Airâ€Microbubble Fabry–Perot Interferometer for High Sensitivity Strain Measurement. Advanced Materials Interfaces, 2018, 5, 1800886.	1.9	17
120	Highly-sensitive optical fiber temperature sensors based on PDMS/silica hybrid fiber structures. Sensors and Actuators A: Physical, 2018, 284, 22-27.	2.0	51
121	Relative humidity sensor based on small up-tapered photonic crystal fiber Mach–Zehnder interferometer. Sensors and Actuators A: Physical, 2018, 280, 24-30.	2.0	33
122	Coal properties on-line analysis with synergy adaptive moving window support vector regression based on immune clone algorithm. , 2018 , , .		0
123	An optical fiber sensor for simultaneous measurement of flow rate and temperature in the pipeline. Optical Fiber Technology, 2018, 45, 313-318.	1.4	33
124	Electrically tunable long period gratings temperature sensor based on liquid crystal infiltrated photonic crystal fibers. Sensors and Actuators A: Physical, 2018, 278, 78-84.	2.0	15
125	Research Advances in Microfiber Humidity Sensors. Small, 2018, 14, e1800524.	5.2	89
126	Optical fiber sensing technology based on Mach-Zehnder interferometer and orbital angular momentum beam. Applied Physics Letters, 2018, 112, .	1.5	27

#	Article	IF	Citations
127	Optical bio-chemical sensors based on whispering gallery mode resonators. Nanoscale, 2018, 10, 13832-13856.	2.8	109
128	A Mach-Zehnder interferometer-based High Sensitivity Temperature sensor for human body monitoring. Optical Fiber Technology, 2018, 45, 93-97.	1.4	34
129	Novel integrated optical fiber sensor for temperature, pressure and flow measurement. Sensors and Actuators A: Physical, 2018, 280, 68-75.	2.0	31
130	High-sensitive Mach-Zehnder interferometers based on no-core optical fiber with large lateral offset. Sensors and Actuators A: Physical, 2018, 281, 9-14.	2.0	13
131	A practical FBG pressure sensor based on diaphragm-cantilever. Sensors and Actuators A: Physical, 2018, 279, 101-106.	2.0	35
132	Magnetic field sensor based on the magnetic-fluid-clad combined with singlemode–multimode–singlemode fiber and large core-offset splicing structure. Measurement Science and Technology, 2018, 29, 035204.	1.4	11
133	High-sensitivity temperature sensor based on single-mode fiber for temperature-measurement application in the ocean. Optical Engineering, 2018, 57, 1.	0.5	4
134	Dynamic simulation of particles in optoelectronic tweezers based on the monte carlo method. Instrumentation Science and Technology, 2017, 45, 1-11.	0.9	1
135	Review on Optical Fiber Sensors Based on the Refractive Index Tunability of Ferrofluid. Journal of Lightwave Technology, 2017, 35, 3406-3412.	2.7	54
136	Electric Field Sensor Based on Photonic Crystal Cavity With Liquid Crystal Infiltration. Journal of Lightwave Technology, 2017, 35, 3440-3446.	2.7	33
137	A Small Probe-Type Flowmeter Based on the Differential Fiber Bragg Grating Measurement Method. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 502-507.	2.4	33
138	A Sensitivity Enhanced Microdisplacement Sensing Method Improved Using Slow Light in Fiber Bragg Grating. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 122-130.	2.4	10
139	In-fiber modal interferometer for simultaneous measurement of curvature and temperature based on hollow core fiber. Optics and Laser Technology, 2017, 92, 138-141.	2.2	39
140	Highly sensitive curvature sensor based on an asymmetrical Mach–Zehnder interferometer. Instrumentation Science and Technology, 2017, 45, 605-617.	0.9	2
141	A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter. Sensors and Actuators B: Chemical, 2017, 242, 673-678.	4.0	48
142	Comparative Analyses of Bi-Tapered Fiber Mach–Zehnder Interferometer for Refractive Index Sensing. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 2483-2489.	2.4	31
143	Hydrogen sensor based on high-birefringence fiber loop mirror with sol-gel Pd/WO3 coating. Sensors and Actuators B: Chemical, 2017, 248, 71-76.	4.0	32
144	High-Sensitive Hydrogen Sensor Based on Photonic Crystal Fiber Model Interferometer. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 2198-2203.	2.4	37

#	Article	IF	CITATIONS
145	Measurement of Magnetic Field and Temperature Based on Fiber-Optic Composite Interferometer. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 1906-1911.	2.4	44
146	Numerical model of carbon nanotubes based on lateral-field optoelectronic tweezers. Molecular Simulation, 2017, 43, 638-643.	0.9	1
147	Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating. Optical Fiber Technology, 2017, 34, 12-15.	1.4	46
148	Research and Application of Ice Thickness and Snow Depth Automatic Monitoring System. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 325-331.	2.4	10
149	Highly Sensitive Refractive Index Sensor Based on Four-Hole Grapefruit Microstructured Fiber with Surface Plasmon Resonance. Plasmonics, 2017, 12, 1961-1965.	1.8	17
150	Simultaneous measurement of RI and temperature based on the combination of Sagnac loop mirror and balloon-like interferometer. Sensors and Actuators B: Chemical, 2017, 243, 800-805.	4.0	61
151	Spectrum online-tunable Mach–Zehnder interferometer based on step-like tapers and its refractive index sensing characteristics. Optics Communications, 2017, 403, 143-149.	1.0	9
152	Optimization of photonic crystal fiber for optical hydrogen sensing. , 2017, , .		0
153	A Ring-Core Optical Fiber Sensor With Asymmetric LPG for Highly Sensitive Temperature Measurement. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 3378-3386.	2.4	32
154	A novel photonic crystal fiber Mach–Zehnder interferometer for enhancing refractive index measurement sensitivity. Optics Communications, 2017, 402, 368-374.	1.0	29
155	Fluorescence Temperature Sensor Based on GQDs Solution Encapsulated in Hollow Core Fiber. IEEE Photonics Technology Letters, 2017, 29, 1544-1547.	1.3	21
156	Temperature-Insensitive Optical Fiber Curvature Sensor Based on SMF-MMF-TCSMF-MMF-SMF Structure. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 141-147.	2.4	64
157	In-fiber rectangular air fabry-perot strain sensor based on high-precision fiber cutting platform. Optics Communications, 2017, 384, 107-110.	1.0	61
158	High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating. Instrumentation Science and Technology, 2017, 45, 181-189.	0.9	23
159	Theoretical Research on the Thermal-Lens Effect of Magnetic Fluid by Using Brownian Dynamics Method. IEEE Transactions on Magnetics, 2017, 53, 1-7.	1.2	3
160	Fiber optic temperature sensor using the orbital angular momentum and gaussian beams. Instrumentation Science and Technology, 2017, 45, 123-136.	0.9	15
161	Artificial Structural Color Pixels: A Review. Materials, 2017, 10, 944.	1.3	61
162	Tunable Orbital Angular Momentum Mode Conversion in Asymmetric Long Period Fiber Gratings. IEEE Photonics Technology Letters, 2017, 29, 2103-2106.	1.3	5

#	Article	lF	Citations
163	Small Curvature Sensor Based on Butterfly-Shaped Mach–Zehnder Interferometer. IEEE Transactions on Electron Devices, 2017, 64, 4644-4649.	1.6	42
164	High Sensitivity Balloon-Like Interferometer for Refractive Index and Temperature Measurement. IEEE Photonics Technology Letters, 2016, 28, 1485-1488.	1.3	42
165	Simultaneous Measurement of RI and Temperature Based on a Composite Interferometer. IEEE Photonics Technology Letters, 2016, 28, 1839-1842.	1.3	17
166	Photonic crystal fiber modal interferometer with Pd/WO3 coating for real-time monitoring of dissolved hydrogen concentration in transformer oil. Review of Scientific Instruments, 2016, 87, 125002.	0.6	15
167	Research on the optical fiber gas flowmeters based on intermodal interference. Optics and Lasers in Engineering, 2016, 82, 122-126.	2.0	20
168	Magnetic Field Measurement Using Surface Plasmon Resonance Sensing Technology Combined With Magnetic Fluid Photonic Crystal. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 170-176.	2.4	22
169	Determination of refractive index by fiber-loop cavity ring-down spectroscopy and a long-period fiber grating. Instrumentation Science and Technology, 2016, 44, 547-557.	0.9	3
170	Measurement of RI and Temperature Using Composite Interferometer With Hollow-Core Fiber and Photonic Crystal Fiber. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 2631-2636.	2.4	35
171	Theory and structure of a modified optical fiber turbine flowmeter. Flow Measurement and Instrumentation, 2016, 50, 178-184.	1.0	21
172	Small and Practical Optical Fiber Fluorescence Temperature Sensor. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 2406-2411.	2.4	40
173	A Practical FBG Sensor Based on a Thin-Walled Cylinder for Hydraulic Pressure Measurement. IEEE Photonics Technology Letters, 2016, 28, 2569-2572.	1.3	38
174	Unidirectional Coupling of Surface Plasmon Polaritons by a Single Slit on a Metal Substrate. IEEE Photonics Technology Letters, 2016, 28, 2395-2398.	1.3	8
175	Temperature Sensing Characteristics Based on Up-Taper and Single Mode–Multimode Fiber Structure. IEEE Photonics Technology Letters, 2016, 28, 2557-2560.	1.3	11
176	Highly Sensitive Airflow Sensor Based on Fabry–Perot Interferometer and Vernier Effect. Journal of Lightwave Technology, 2016, 34, 5351-5356.	2.7	104
177	In-Fiber Mach–Zehnder Interferometer Based on Up-Taper Fiber Structure With Er3+ Doped Fiber Ring Laser. Journal of Lightwave Technology, 2016, 34, 3475-3481.	2.7	25
178	Enhancement of RI Sensitivity Through Bending a Tapered-SMF-Based Balloon-Like Interferometer. Journal of Lightwave Technology, 2016, 34, 3293-3299.	2.7	32
179	Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating. Optics Communications, 2016, 377, 89-93.	1.0	99
180	Fiber optic SPR sensor for refractive index and temperature measurement based on MMF-FBG-MMF structure. Sensors and Actuators B: Chemical, 2016, 237, 521-525.	4.0	126

#	Article	IF	CITATIONS
181	Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique. Sensors and Actuators B: Chemical, 2016, 228, 665-672.	4.0	44
182	Temperature and refractive index sensor using a high-birefringence fiber loop mirror and single mode-coreless-single mode fiber structure. Instrumentation Science and Technology, 2016, 44, 366-376.	0.9	5
183	Sensitivity-Enhanced Photonic Crystal Fiber Refractive Index Sensor With Two Waist-Broadened Tapers. Journal of Lightwave Technology, 2016, 34, 1373-1379.	2.7	70
184	Characterization of infrared gas sensors employing hollow-core photonic crystal fibers. Instrumentation Science and Technology, 2016, 44, 495-503.	0.9	7
185	Magnetic Field Measurement Based on the Sagnac Interferometer With a Ferrofluid-Filled High-Birefringence Photonic Crystal Fiber. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 1503-1507.	2.4	85
186	High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer. Sensors and Actuators B: Chemical, 2016, 225, 213-220.	4.0	117
187	Review on the graphene based optical fiber chemical and biological sensors. Sensors and Actuators B: Chemical, 2016, 231, 324-340.	4.0	267
188	Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology. Sensors and Actuators B: Chemical, 2016, 222, 159-165.	4.0	69
189	Refractive index sensor based on fiber loop ring-down spectroscopy. Instrumentation Science and Technology, 2016, 44, 241-248.	0.9	6
190	Characteristics of slow light from coupled fiber ring resonators. Instrumentation Science and Technology, 2016, 44, 115-126.	0.9	3
191	Novel torsion sensor using a polarization maintaining photonic crystal fiber loop mirror. Instrumentation Science and Technology, 2016, 44, 46-53.	0.9	10
192	Low-cost and high-precision measurement of gas concentration by the way of wavelength modulation spectroscopy. Optik, 2015, 126, 4527-4530.	1.4	1
193	Temperature insensitive curvature sensor based on a combination interference structure and an intensity demodulation method. Microwave and Optical Technology Letters, 2015, 57, 806-809.	0.9	2
194	Novel Method of Detecting Movement of the Interference Fringes Using One-Dimensional PSD. Sensors, 2015, 15, 12857-12871.	2.1	2
195	Temperature insensitive refractive index sensor based on a combination interference structure. Optik, 2015, 126, 697-700.	1.4	0
196	PCF taper-based Mach–Zehnder interferometer for refractive index sensing in a PDMS detection cell. Sensors and Actuators B: Chemical, 2015, 213, 1-4.	4.0	67
197	Novel Gas Concentration Measurements based on Harmonic Detection and a Broadband Light Source. Instrumentation Science and Technology, 2015, 43, 269-282.	0.9	0
198	Sensing Properties of Long Period Fiber Grating Coated by Silver Film. IEEE Photonics Technology Letters, 2015, 27, 46-49.	1.3	26

#	Article	IF	CITATIONS
199	Applications of Modal Interferences in Optical Fiber Sensors Based on Mismatch Methods. Instrumentation Science and Technology, 2015, 43, 1-20.	0.9	9
200	A Novel Long-Tail Fiber Current Sensor Based on Fiber Loop Ring-Down Spectroscopy and Fabry-Perot Cavity Filled With Magnetic Fluid. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 2005-2011.	2.4	35
201	A highly sensitive Mach–Zehnder interferometric refractive index sensor based on core-offset single mode fiber. Sensors and Actuators A: Physical, 2015, 223, 119-124.	2.0	67
202	Review on the Optimization Methods of Slow Light in Photonic Crystal Waveguide. IEEE Nanotechnology Magazine, 2015, 14, 407-426.	1.1	59
203	Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints. Sensors and Actuators B: Chemical, 2015, 221, 406-410.	4.0	85
204	A review for optical sensors based on photonic crystal cavities. Sensors and Actuators A: Physical, 2015, 233, 374-389.	2.0	159
205	Fiber-Optic SPR Sensor for Temperature Measurement. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 3099-3104.	2.4	97
206	Fiber ring resonator based slow-light and high sensitivity gas sensing technology. Sensors and Actuators B: Chemical, 2015, 214, 197-203.	4.0	5
207	Dielectrophoretic behavior of a single cell when manipulated by optoelectronic tweezers: A study based on COMSOL ALE simulations. Journal of Electrostatics, 2015, 75, 72-76.	1.0	5
208	Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature. Sensors and Actuators B: Chemical, 2015, 216, 563-571.	4.0	27
209	SMF Taper Evanescent Field-Based RI Sensor Combined With Fiber Loop Ring Down Technology. IEEE Photonics Technology Letters, 2015, 27, 1802-1805.	1.3	18
210	Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid. Optics Communications, 2015, 356, 628-633.	1.0	32
211	A Novel Current Sensor Based on Magnetic Fluid and Fiber Loop Cavity Ring-Down Technology. IEEE Sensors Journal, 2015, 15, 6192-6198.	2.4	21
212	Fiber-Optic Refractive Index Sensor Based on Multi-Tapered SMS Fiber Structure. IEEE Sensors Journal, 2015, 15, 6348-6353.	2.4	65
213	Theoretical Analysis and Experimental Measurement of Birefringence Properties in Magnetic Fluid Subjected to Magnetic Field. IEEE Transactions on Magnetics, 2015, 51, 1-5.	1.2	12
214	High Sensitive Modal Interferometer for Temperature and Refractive Index Measurement. IEEE Photonics Technology Letters, 2015, 27, 1341-1344.	1.3	34
215	Magnetic Field Sensor Based on Photonic Crystal Fiber Taper Coated With Ferrofluid. IEEE Photonics Technology Letters, 2015, 27, 26-29.	1.3	83
216	Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity. Sensors and Actuators B: Chemical, 2015, 209, 431-437.	4.0	64

#	Article	IF	Citations
217	Research on a novel variable-area optical fiber gas flow sensor. Sensors and Actuators A: Physical, 2015, 221, 29-32.	2.0	8
218	A NOVEL BRILLOUIN OPTICAL TIME-DOMAIN REFLECTOMETER DEMODULATING METHOD BASED ON A SLOW-LIGHT MACH-ZEHNDER INTERFEROMETER. Instrumentation Science and Technology, 2014, 42, 290-297.	0.9	2
219	A NOVEL PHOTOELECTRIC CAPILLARY FOR MANIPULATION OF BIOLOGICAL PARTICLES. Instrumentation Science and Technology, 2014, 42, 618-626.	0.9	O
220	DETERMINATION OF CONCENTRATION AND TEMPERATURE BY A FABRY-PEROT CAVITY FORMED BY TWO FIBER BRAGG GRATINGS. Instrumentation Science and Technology, 2014, 42, 412-422.	0.9	2
221	Theoretical Research on Optofluidic Photonic Crystal Waveguide for Broadly Tunable and Ultra-Wideband Slow Light. International Journal of Optomechatronics, 2014, 8, 114-128.	3.3	1
222	Theoretical and experimental research on the effect of coupler splitting ratio for fiber loop ringâ€down spectroscopy technology. Microwave and Optical Technology Letters, 2014, 56, 99-103.	0.9	10
223	Reviews on simulation methods for the microstructure of magnetic fluid with and without applied magnetic field. International Journal of Applied Electromagnetics and Mechanics, 2014, 46, 593-610.	0.3	2
224	Highâ€sensitive temperature sensor based on an alcoholâ€filled HiBi photonic crystal fiber loop mirror. Microwave and Optical Technology Letters, 2014, 56, 1334-1337.	0.9	4
225	High-sensitive refractive index sensor based on slow light engineered photonic crystal cavity. , 2014, , .		O
226	All-fiber Mach-Zehnder interferometer using a tapered photonic crystal fiber for refractive index measurement. , 2014 , , .		1
227	Fiber Optic Fabry-Perot Magnetic Field Sensor With Temperature Compensation Using a Fiber Bragg Grating. IEEE Transactions on Instrumentation and Measurement, 2014, 63, 2210-2214.	2.4	94
228	PRINCIPLES OF STRUCTURAL SLOW LIGHT AND ITS APPLICATIONS FOR OPTICAL FIBER SENSORS: A REVIEW. Instrumentation Science and Technology, 2014, 42, 72-94.	0.9	4
229	A vibration-sensing system based on SMS fiber structure. Sensors and Actuators A: Physical, 2014, 214, 163-167.	2.0	32
230	Experimental research on FLM temperature sensor with an ethanol-filled photonic crystal fiber. Sensors and Actuators A: Physical, 2014, 209, 62-67.	2.0	22
231	Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG. Sensors and Actuators B: Chemical, 2014, 196, 518-524.	4.0	47
232	Simulation and analysis of particle trajectory caused by the optical-induced dielectrophoresis force. Microfluidics and Nanofluidics, 2014, 16, 533-540.	1.0	15
233	Study on the assembly and separation of biological cell by optically induced dielectrophoretic technology. Microfluidics and Nanofluidics, 2014, 17, 287-294.	1.0	7
234	Fiber Loop Ring-Down Refractive Index Sensor Based on High- <inline-formula> <tex-math notation="TeX">\$Q\$ </tex-math></inline-formula> Photonic Crystal Cavity. IEEE Sensors Journal, 2014, 14, 1878-1885.	2.4	25

#	Article	IF	CITATIONS
235	Magnetic Fluid-Filled Optical Fiber Fabry–Pérot Sensor for Magnetic Field Measurement. IEEE Photonics Technology Letters, 2014, 26, 217-219.	1.3	108
236	Dispersion optimization of slow light in slotted photonic crystal waveguide by selective air holes infiltration. Optik, 2014, 125, 1967-1970.	1.4	3
237	Simulation and Experimental Measurement of Magnetic Fluid Transmission Characteristics Subjected to the Magnetic Field. IEEE Transactions on Magnetics, 2014, 50, 1-7.	1.2	9
238	Research on temperature and magnetic field sensing characteristics of photonic crystal fiber filled with magnetic fluid. Microwave and Optical Technology Letters, 2014, 56, 831-834.	0.9	9
239	SIMULTANEOUS MEASUREMENT OF STRAIN AND TEMPERATURE WITH POLARIZATION MAINTAINING FIBER BRAGG GRATING LOOP MIRROR. Instrumentation Science and Technology, 2014, 42, 298-307.	0.9	6
240	AN OPTICAL FIBER TEMPERATURE SENSOR BASED ON AN ETHANOL FILLED FABRY-PEROT CAVITY. Instrumentation Science and Technology, 2014, 42, 402-411.	0.9	6
241	Design and experiments on a wide range fiber Bragg grating sensor for health monitoring of coal mines. Optik, 2014, 125, 6287-6290.	1.4	13
242	Simultaneous measuring of magnetic field and temperature based on photonic crystal fiber loop filled with magnetic fluid. Microwave and Optical Technology Letters, 2014, 56, 2548-2552.	0.9	4
243	A novel temperature and strain sensing method based on high-birefringence fiber loop mirror. Optik, 2014, 125, 5254-5256.	1.4	1
244	Tunable Characteristics and Mechanism Analysis of the Magnetic Fluid Refractive Index With Applied Magnetic Field. IEEE Transactions on Magnetics, 2014, 50, 1-5.	1.2	74
245	Simulation on Microstructure and Optical Property of Magnetic Fluid Photonic Crystal. IEEE Transactions on Magnetics, 2014, 50, 1-12.	1.2	8
246	Improved design of slow light interferometer and its application in FBG displacement sensor. Sensors and Actuators A: Physical, 2014, 214, 168-174.	2.0	19
247	Investigation of the high sensitivity RI sensor based on SMS fiber structure. Sensors and Actuators A: Physical, 2014, 205, 186-190.	2.0	71
248	Fiber optic SPR sensor for liquid concentration measurement. Sensors and Actuators B: Chemical, 2014, 192, 229-233.	4.0	116
249	MAGNETIC FIELD AND TEMPERATURE MEASUREMENTS WITH A MAGNETIC FLUID-FILLED PHOTONIC CRYSTAL FIBER BRAGG GRATING. Instrumentation Science and Technology, 2013, 41, 463-472.	0.9	15
250	Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration. Sensors and Actuators B: Chemical, 2013, 184, 179-188.	4.0	34
251	Experimental measurement of the temperature-birefringence characteristics of birefringent photonic crystal fiber filled with ethanol. Optics Communications, 2013, 309, 6-8.	1.0	5
252	SPECIAL ISSUE ON OPTICAL FIBER SENSORS AND APPLICATIONS. Instrumentation Science and Technology, 2013, 41, 111-116.	0.9	1

#	Article	IF	Citations
253	Liquid refractive index sensor based on slow light in slotted photonic crystal waveguide. Optik, 2013, 124, 5443-5446.	1.4	7
254	Optimization of Slow Light in Slotted Photonic Crystal Waveguide With Liquid Infiltration. Journal of Lightwave Technology, 2013, 31, 2448-2454.	2.7	19
255	Gas concentration sensor based on fiber loop ring-down spectroscopy. Optics Communications, 2013, 309, 328-332.	1.0	23
256	A Novel Optical Fiber Temperature Sensor Based on Fabry-Perot Cavity. Microwave and Optical Technology Letters, 2013, 55, 2487-2490.	0.9	7
257	Optimizing the slow light properties of slotted photonic crystal waveguide and its application in a high-sensitivity gas sensing system. Measurement Science and Technology, 2013, 24, 105109.	1.4	17
258	RESEARCH PROGRESS OF THE OPTICAL FIBER SENSORS IN PROCESS TOMOGRAPHY. Instrumentation Science and Technology, 2013, 41, 154-174.	0.9	1
259	IMPROVED SENSITIVITY OF A PHOTONIC CRYSTAL FIBER EVANESCENT-WAVE GAS SENSOR. Instrumentation Science and Technology, 2013, 41, 202-211.	0.9	1
260	HIGH-SENSITIVITY OPTICAL FIBER GAS SENSORS BASED ON NOVEL OPTICAL DEVICES. Instrumentation Science and Technology, 2013, 41, 187-201.	0.9	6
261	REVIEW ON ADVANCES OF SENSORS BASED ON FIBER LOOP RING-DOWN SPECTROSCOPY. Instrumentation Science and Technology, 2013, 41, 349-364.	0.9	12
262	Novel Fiber Optic Gas Sensor Based on Photonic Crystal Slow-Light Waveguide. Microwave and Optical Technology Letters, 2013, 55, 1796-1800.	0.9	2
263	High Sensitive BOTDR Demodulation Method by Using Slow-Light in Fiber Grating. Journal of Lightwave Technology, 2013, 31, 3345-3351.	2.7	10
264	INVESTIGATION ON STABILITY OF EXTRINSIC FABRY–PEROT INTERFEROMETRIC PRESSURE SENSORS FOR HIGH-TEMPERATURE/HIGH-PRESSURE UNDERGROUND APPLICATIONS. Instrumentation Science and Technology, 2013, 41, 143-153.	0.9	3
265	The Impact of Temperature on the Transmission Characteristics of Photonic Crystal Fiber Filled Magnetic Fluid. , 2013, , .		0
266	Research on the Coupling Efficiency of Arrayed Waveguide. , 2013, , .		0
267	Research and Design of Mine Hydraulic Support Fiber Bragg Grating Pressure Sensor. , 2013, , .		0
268	Fiber loop ring-down refractive index sensor based on high-Q photonic crystal cavity. , 2012, , .		1
269	Wideband Slow Light With Large Group Index and Low Dispersion in Slotted Photonic Crystal Waveguide. Journal of Lightwave Technology, 2012, 30, 2812-2817.	2.7	26
270	Theoretical research on high sensitivity gas sensor due to slow light in slotted photonic crystal waveguide. Sensors and Actuators B: Chemical, 2012, 173, 505-509.	4.0	21

#	Article	lF	Citations
271	REVIEW ON STRUCTURES AND PRINCIPLES OF GAS CELLS IN THE ABSORPTION SPECTRUM–BASED OPTICAL FIBER GAS SENSOR SYSTEMS. Instrumentation Science and Technology, 2012, 40, 385-401.	0.9	6
272	RECENT DEVELOPMENTS AND APPLICATIONS OF POLARIZATION-MAINTAINING FIBER LOOP MIRRORS. Instrumentation Science and Technology, 2012, 40, 239-261.	0.9	6
273	Research on fiber optic temperature sensor using a novel high-birefringent fiber loop mirror with a reflection probe. Sensors and Actuators A: Physical, 2012, 184, 22-27.	2.0	9
274	High sensitivity gas sensing method based on slow light in photonic crystal waveguide. Sensors and Actuators B: Chemical, 2012, 173, 28-31.	4.0	27
275	Study on the variability of pulse wave and ECG of graduate students with different body positions. , 2012, , .		5
276	Fiber bragg grating current sensor based on birefringence effect. Microwave and Optical Technology Letters, 2012, 54, 822-826.	0.9	0
277	Novel optical devices based on the transmission properties of magnetic fluid and their characteristics. Optics and Lasers in Engineering, 2012, 50, 1177-1184.	2.0	34
278	Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid. Optics and Laser Technology, 2012, 44, 899-902.	2.2	136
279	Light-trapping structures based on low-melting point metals for thin-film solar cells. , 2011, , .		0
280	Tunable Optical Fiber Filter Based on a Fiber Bragg Grating Loop Mirror. Journal of Lightwave Technology, 2011, 29, 3672-3675.	2.7	9
281	Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics. Journal of Magnetism and Magnetic Materials, 2011, 323, 2987-2996.	1.0	56
282	Research advances of photonic crystal gas and liquid sensors. Sensors and Actuators B: Chemical, 2011, 160, 1288-1297.	4.0	51
283	Output power characteristics of C+Lâ€band erbiumâ€doped superfluorescent fiber source. Microwave and Optical Technology Letters, 2011, 53, 2212-2216.	0.9	7
284	Interrogation technique using a novel spectra bandwidth measurement method with a blazed FBG and a fiber-optic array for an FBG displacement sensor. Sensors and Actuators A: Physical, 2011, 165, 185-188.	2.0	10
285	Research on High Sensitivity Optical Fiber Interference Sensing Due to Slow Light., 2009,,.		1
286	New mechanisms of slow light and their applications. Optics and Laser Technology, 2009, 41, 517-525.	2.2	44
287	Optical Salinity Sensor System Based on Fiber-Optic Array. IEEE Sensors Journal, 2009, 9, 1148-1153.	2.4	35
288	Fiber Bragg Grating Sensor with a Simple Demodulation Method. , 2009, , .		0

#	Article	IF	Citations
289	A novel weight measurement method based on birefringence in fiber Bragg gratings. Frontiers of Optoelectronics in China, 2008, 1 , 226-230.	0.2	5
290	A Novel Double-Arched-Beam-Based Fiber Bragg Grating Sensor for Displacement Measurement. IEEE Photonics Technology Letters, 2008, 20, 1296-1298.	1.3	26
291	Novel optical sensor for simultaneous measurement of liquid concentration and temperature. Optics and Laser Technology, 2007, 39, 105-109.	2.2	7
292	Novel current measurement method based on fiber Bragg grating sensor technology. Sensors and Actuators A: Physical, 2006, 126, 112-116.	2.0	27
293	Novel force sensor based on a couple of fiber Bragg gratings. Measurement: Journal of the International Measurement Confederation, 2005, 38, 30-33.	2.5	30
294	Novel target type flowmeter based on a differential fiber Bragg grating sensor. Measurement: Journal of the International Measurement Confederation, 2005, 38, 230-235.	2.5	73
295	Temperature-compensated high pressure FBG sensor with a bulk-modulus and self-demodulation method. Sensors and Actuators A: Physical, 2005, 118, 254-258.	2.0	15
296	Pressure sensor based on a free elastic cylinder and birefringence effect on an FBG with temperature-compensation. Measurement: Journal of the International Measurement Confederation, 2005, 38, 176-180.	2.5	36
297	Discrimination methods and demodulation techniques for fiber Bragg grating sensors. Optics and Lasers in Engineering, 2004, 41, 1-18.	2.0	186
298	Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement. Optics and Laser Technology, 2004, 36, 39-42.	2.2	53
299	Compensation technology for a novel reflex optical fiber temperature sensor used under offshore oil well. Optics Communications, 2003, 215, 11-16.	1.0	13
300	Experimental research and analysis of salinity measurement based on optical techniques. Sensors and Actuators B: Chemical, 2003, 92, 331-336.	4.0	42
301	Monitoring technology of salinity in water with optical fiber sensor. Journal of Lightwave Technology, 2003, 21, 1334-1338.	2.7	34
302	Fiber-optic temperature sensor used for oil well based on semiconductor optical absorption. IEEE Sensors Journal, 2003, 3, 400-403.	2.4	11
303	Simultaneous measurement of down-hole high pressure and temperature with a bulk-modulus and FBG sensor. IEEE Photonics Technology Letters, 2002, 14, 1584-1586.	1.3	59
304	Novel optical fiber sensor for simultaneous measurement of temperature and salinity. Sensors and Actuators B: Chemical, 2002, 86, 63-67.	4.0	67
305	Shape measurement based on fiber-optic technique for complex internal surface. Measurement: Journal of the International Measurement Confederation, 2001, 30, 289-295.	2.5	15
306	A novel fiber-optic sensor used for small internal curved surface measurement. Sensors and Actuators A: Physical, 2000, 86, 211-215.	2.0	31

Yong Zhao

#	Article	IF	CITATIONS
307	An automatic tracking system for marine navigation. , 0, , .		3
308	Inexpensive optical fiber Fabry–Perot microcavity with controllable length for sensitive temperature measurements. Instrumentation Science and Technology, 0, , 1-13.	0.9	2
309	Dynamic simulation on a dielectric micro-particle in quad-beam optic fibers with intersection arrangement. Journal of Optics (India), 0, , 1 .	0.8	O