Manuel Antonio Caraballo Monge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3372889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian) Tj ETQq1 1 0.7 2008, 55, 1797-1809.	84314 rgl 1.2	3T /Overlock 88
2	Toxicity and potential risk assessment of a river polluted by acid mine drainage in the Iberian Pyrite Belt (SW Spain). Science of the Total Environment, 2011, 409, 4763-4771.	3.9	79
3	Acid mine drainage in the Iberian Pyrite Belt: 2. Lessons learned from recent passive remediation experiences. Environmental Science and Pollution Research, 2013, 20, 7837-7853.	2.7	71
4	Field multi-step limestone and MgO passive system to treat acid mine drainage with high metal concentrations. Applied Geochemistry, 2009, 24, 2301-2311.	1.4	70
5	Natural pretreatment and passive remediation of highly polluted acid mine drainage. Journal of Environmental Management, 2012, 104, 93-100.	3.8	70
6	Long term remediation of highly polluted acid mine drainage: A sustainable approach to restore the environmental quality of the Odiel river basin. Environmental Pollution, 2011, 159, 3613-3619.	3.7	69
7	From highly polluted Zn-rich acid mine drainage to non-metallic waters: Implementation of a multi-step alkaline passive treatment system to remediate metal pollution. Science of the Total Environment, 2012, 433, 323-330.	3.9	66
8	Management strategies and valorization for waste sludge from active treatment of extremely metal-polluted acid mine drainage: A contribution for sustainable mining. Journal of Cleaner Production, 2017, 141, 1057-1066.	4.6	65
9	Field application of calcite Dispersed Alkaline Substrate (calcite-DAS) for passive treatment of acid mine drainage with high Al and metal concentrations. Applied Geochemistry, 2008, 23, 1660-1674.	1.4	61
10	Biologically-induced precipitation of sphalerite–wurtzite nanoparticles by sulfate-reducing bacteria: Implications for acid mine drainage treatment. Science of the Total Environment, 2012, 423, 176-184.	3.9	57
11	Metastability, nanocrystallinity and pseudo-solid solution effects on the understanding of schwertmannite solubility. Chemical Geology, 2013, 360-361, 22-31.	1.4	53
12	Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: Implications for water resources management and remediation. Science of the Total Environment, 2016, 539, 427-435.	3.9	53
13	Sequential extraction and DXRD applicability to poorly crystalline Fe- and Al-phase characterization from an acid mine water passive remediation system. American Mineralogist, 2009, 94, 1029-1038.	0.9	50
14	Observations and assessment of iron oxide and green rust nanoparticles in metal-polluted mine drainage within a steep redox gradient. Environmental Chemistry, 2014, 11, 377.	0.7	50
15	Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems. Journal of Hazardous Materials, 2012, 229-230, 107-114.	6.5	47
16	The enigmatic iron oxyhydroxysulfate nanomineral schwertmannite: Morphology, structure, and composition. American Mineralogist, 2012, 97, 1469-1482.	0.9	47
17	The rapid expansion of environmental mineralogy in unconventional ways: Beyond the accepted definition of a mineral, the latest technology, and using nature as our guide. American Mineralogist, 2015, 100, 14-25.	0.9	37
18	Dissolved and particulate metals and arsenic species mobility along a stream affected by Acid Mine Drainage in the Iberian Pyrite Belt (SW Spain). Applied Geochemistry, 2012, 27, 1944-1952.	1.4	32

#	Article	IF	CITATIONS
19	Uncertainty in the measurement of toxic metals mobility in mining/mineral wastes by standardized BCR®SEP. Journal of Hazardous Materials, 2018, 360, 587-593.	6.5	30
20	Hydrochemical performance and mineralogical evolution of a dispersed alkaline substrate (DAS) remediating the highly polluted acid mine drainage in the full-scale passive treatment of Mina Esperanza (SW Spain). American Mineralogist, 2011, 96, 1270-1277.	0.9	28
21	A geochemical approach to the restoration plans for the Odiel River basin (SW Spain), a watershed deeply polluted by acid mine drainage. Environmental Science and Pollution Research, 2017, 24, 4506-4516.	2.7	25
22	Aluminum mobility in mildly acidic mine drainage: Interactions between hydrobasaluminite, silica and trace metals from the nano to the meso-scale. Chemical Geology, 2019, 519, 1-10.	1.4	19
23	Implementation of an MgO-based metal removal step in the passive treatment system of Shilbottle, UK: Column experiments. Journal of Hazardous Materials, 2010, 181, 923-930.	6.5	18
24	Mineralogy and Geochemistry of Zn-Rich Mine-Drainage Precipitates From an MgO Passive Treatment System by Synchrotron-Based X-ray Analysis. Environmental Science & Technology, 2011, 45, 7826-7833.	4.6	18
25	Seasonal variations in the formation of Al and Si rich Fe-stromatolites in the highly polluted acid mine drainage of Agua Agria Creek (Tharsis, SW Spain). Chemical Geology, 2011, 284, 97-104.	1.4	17
26	Revalorization of Haveri Au-Cu mine tailings (SW Finland) for potential reprocessing. Journal of Geochemical Exploration, 2020, 218, 106614.	1.5	17
27	Rotating-disk sorptive extraction coupled to gas chromatography mass spectrometry for the determination of phthalates in bottled water. Analytical Methods, 2019, 11, 6111-6118.	1.3	15
28	Metal retention, mineralogy, and design considerations of a mature permeable reactive barrier (PRB) for acidic mine water drainage in Northumberland, U.K American Mineralogist, 2010, 95, 1642-1649.	0.9	12
29	Past, present and future global influence and technological applications of iron-bearing metastable nanominerals. Gondwana Research, 2022, 110, 283-304.	3.0	12
30	Exploring sulfate and metals removal from Andean acid mine drainage using CaCO3-rich residues from agri-food industries and witherite (BaCO3). Journal of Cleaner Production, 2020, 274, 123450.	4.6	11
31	Mine waste from carbonatite deposits as potential rare earth resource: Insight into the Phalaborwa (Palabora) Complex. Journal of Geochemical Exploration, 2022, 232, 106884.	1.5	11
32	Hydrogeochemical and environmental water quality standards in the overlap between high mountainous natural protected areas and copper mining activities (Mapocho river upper basin,) Tj ETQq0 0 0 rg	BT ‡Qs verlo	ck 10 Tf 50 2
33	The role of local geochemical and mineralogical backgrounds as essential information to build efficient sediment quality guidelines at high-mountainous hydrothermally-altered basins (Mapocho) Tj ETQq1 1 (0.7 8.4 314	rgBaT /Overloc
34	Geochemical, mineralogical and geostatistical modelling of an IOCG tailings deposit (El Buitre, Chile): Implications for environmental safety and economic potential. Journal of Geochemical Exploration, 2022, 239, 106997.	1.5	6
35	Initial phthalates fingerprint and hydrochemical signature as key factors controlling phthalates concentration trends in PET-bottled waters during long storage times. Food Chemistry, 2022, 372, 131248.	4.2	5
36	Environmental and geochemical characterization of alkaline mine wastes from Phalaborwa (Palabora) Complex, South Africa. Journal of Geochemical Exploration, 2021, 224, 106757.	1.5	4

#	Article	IF	CITATIONS
37	An integrated modeling approach for mineral and metal transport in acidic rivers at high mountainous porphyry Cu systems. Journal of Hydrology, 2021, 602, 126718.	2.3	4
38	Detection and assignment of inorganic aqueous polymers relevant to environmental nanogeoscience by direct infusion electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2019, 54, 495-506.	0.7	1