Xue-Sen Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3372742/publications.pdf

Version: 2024-02-01

126907 197818 3,629 134 33 49 citations h-index g-index papers 135 135 135 2603 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of spirocyclopropylpyrazole derivatives <i>via</i> the cascade reaction of alkylidenecyclopropanes with pyrazolidinones and trifluoroethanol. Organic Chemistry Frontiers, 2022, 9, 1410-1416.	4.5	6
2	Rh(III)â€Catalyzed Reaction of 2â€Arylâ€3â€acylâ€1 <i>H</i> à€indoles with αâ€Diazo Carbonyl Compounds: Syntosê€Carbonyl Substituted Benzo[<i>a</i>)]carbazoles via [5+1] Annulation. Asian Journal of Organic Chemistry, 2022, 11, .	thesis of 2.7	3
3	Synthesis of Spiro[benzo[<i>d</i>)[1,3]oxazine-4,4′-isoquinoline]s via [4+1+1] Annulation of <i>N</i> -Aryl Amidines with Diazo Homophthalimides and O ₂ . Organic Letters, 2022, 24, 1280-1285.	4.6	33
4	Synthesis of <i>N</i> -Arylindoles from 2-Alkenylanilines and Diazonaphthalen-2(1 <i>H</i>)-ones through Simultaneous Indole Construction and Aryl Introduction. Journal of Organic Chemistry, 2022, 87, 7392-7404.	3.2	11
5	Condition-Dependent Selective Synthesis of Indolo $[1,2-\langle i\rangle c\langle i\rangle]$ quinazolines and Indolo $[3,2-\langle i\rangle c\langle i\rangle]$ quinolines from $2-(1\langle i\rangle H\langle i\rangle -1 ndol-2-yl)$ anilines and Sulfoxonium Ylides. Journal of Organic Chemistry, 2022, 87, 9815-9828.	3.2	6
6	Synthesis of pyrazolidinone fused cinnolines via the cascade reactions of 1-phenylpyrazolidinones with vinylene carbonate. Tetrahedron Letters, 2022, 103, 153984.	1.4	5
7	Pd($\langle scp \rangle ii \langle scp \rangle$)-Catalyzed [4 + 1 + 1] cycloaddition of simple $\langle i \rangle o \langle i \rangle$ -aminobenzoic acids, CO and amines: direct and versatile synthesis of diverse $\langle i \rangle N \langle i \rangle$ -substituted quinazoline-2,4(1 $\langle i \rangle H \langle i \rangle$,3 $\langle i \rangle H \langle i \rangle$)-diones. Green Chemistry, 2021, 23, 526-535.	9.0	6
8	Recent advances in the functionalization of saturated cyclic amines. Organic Chemistry Frontiers, 2021, 8, 4582-4606.	4.5	45
9	Synthesis of tetracyclic indenopyrazolopyrazolones through cascade reactions of aryl azomethine imines with propargyl alcohols. Organic Chemistry Frontiers, 2021, 8, 3734-3739.	4.5	20
10	Synthesis of 3-spirooxindole $3 < i > H < / i > -indoles$ through Rh($< scp > iii < / scp >$)-catalyzed [4 + 1] redox-neutral spirocyclization of $< i > N < / i > -aryl$ amidines with diazo oxindoles. Organic Chemistry Frontiers, 2021, 8, 4131-4137.	4.5	31
11	Selective cleavage and reconstruction of C–N/C–C bonds in saturated cyclic amines: tunable synthesis of lactams and functionalized acyclic amines. Organic Chemistry Frontiers, 2021, 8, 5118-5123.	4.5	12
12	An unusual reaction mode of 1-phenylpyrazolidinones toward diazonaphthalen-2(1 <i>H</i>)-ones featuring cascade C(sp ²)â€"H and C(sp ³)â€"H bond cleavage. Organic Chemistry Frontiers, 2021, 8, 3238-3243.	4.5	32
13	Selective Synthesis of Dihydrophenanthridine and Phenanthridine Derivatives from the Cascade Reactions of $\langle i \rangle \circ \langle i \rangle$ -Arylanilines with Alkynoates through Câ \in "H/Nâ \in "H/Câ \in "C Bond Cleavage. Journal of Organic Chemistry, 2021, 86, 5805-5819.	3.2	13
14	Selective Synthesis of 3â€(αâ€Fluorovinyl)indoles and 3â€Acylindoles via the Cascade Reactions of 1â€Phenylpyrazolidinones with α,αâ€Difluoromethylene Alkynes. Advanced Synthesis and Catalysis, 2021, 363, 3600-3606.	4.3	28
15	Synthesis of Succinimide Spiro-Fused Sultams from the Reaction of <i>N</i> -(Phenylsulfonyl)acetamides with Maleimides via C(sp ²)â€"H Activation. Journal of Organic Chemistry, 2021, 86, 10330-10342.	3.2	15
16	Direct α-Alkenylation of Cyclic Amines with Maleimides through Fe(III)-Catalyzed C(sp ^{)â€"H/C(sp⁾²)â€"H Cross Dehydrogenative Coupling. Journal of Organic Chemistry, 2021, 86, 11708-11722.}	3.2	8
17	Synthesis of Hydroxysuccinimide Substituted Indolin-3-ones via One-Pot Cascade Reaction of ⟨i>o-Alkynylnitrobenzenes with Maleimides under Au(III)–Cu(II) Relay/Synergetic Catalysis. Journal of Organic Chemistry, 2021, 86, 14652-14662.	3.2	15
18	Synthesis of Dihydroquinolinone Derivatives via the Cascade Reaction of <i>o</i> -Silylaryl Triflates with Pyrazolidinones. Journal of Organic Chemistry, 2021, 86, 15203-15216.	3.2	5

#	Article	IF	CITATIONS
19	Synthesis of $\langle i \rangle N \langle i \rangle$ -acylbenzimidazoles through [4 + 1] annulation of $\langle i \rangle N \langle i \rangle$ -arylpivalimidamides with dioxazolones. Organic Chemistry Frontiers, 2021, 8, 6265-6272.	4.5	18
20	Synthesis of Indolyl-Tethered Spiro[cyclobutane-1,1′-indenes] through Cascade Reactions of 1-(Pyridin-2-yl)-1 <i>H</i> i-indoles with Alkynyl Cyclobutanols. Organic Letters, 2021, 23, 8510-8515.	4.6	13
21	Tunable Synthesis of Indeno[1,2- <i>c</i>]furans and 3-Benzoylindenones via FeCl ₃ -Catalyzed Carbene/Alkyne Metathesis Reaction of <i>o</i> -Alkynylbenzoyl Diazoacetates. Organic Letters, 2021, 23, 388-393.	4.6	9
22	Synthesis of β-Dicarbonylated Tetrahydropiperidines via Direct Oxidative Cross-Coupling between Different C(sp3)–H Bonds. Journal of Organic Chemistry, 2020, 85, 2220-2230.	3.2	16
23	Complementary C–H Functionalization Mode of Benzoylacetonitriles: Computer-Augmented Study of a Regio- and Stereoselective Synthesis of Functionalized Benzofulvenes. Organic Letters, 2020, 22, 46-51.	4.6	52
24	Selective Synthesis of Indazolo[2,3―a]quinolines via Rh(III)â€Catalyzed Oxidantâ€Free [4+2] or [5+1] Annulation of 2â€Arylâ€⊋ H â€indazoles with α â€Diazo Carbonyl Compounds. Advanced Synthesis and Catalysis, 2020, 362, 913-926.	4.3	29
25	Synthesis of maleimide fused benzocarbazoles and imidazo[1,2- <i>a</i>) pyridines <i>via</i> rhodium(<scp>iii</scp>)-catalyzed [4 + 2] oxidative cycloaddition. Organic Chemistry Frontiers, 2020, 7, 3698-3704.	4.5	41
26	Synthesis of pyrazolone fused benzodiazepines <i>via</i> Rh(<scp>iii</scp>)-catalyzed [4 + 3] annulation of 1-phenylpyrazolidinones with propargyl alcohols. Organic Chemistry Frontiers, 2020, 7, 2284-2290.	4.5	51
27	Synthesis of 1,3-Benzodiazepines through $[5 + 2]$ Annulation of $\langle i \rangle N \langle i \rangle$ -Aryl Amidines with Propargylic Esters. Organic Letters, 2020, 22, 9506-9512.	4.6	25
28	Synthesis of \hat{I}^2 -Methylsulfonylated N-Heterocycles from Saturated Cyclic Amines with the Insertion of Sulfur Dioxide. Journal of Organic Chemistry, 2020, 85, 15600-15609.	3.2	23
29	Selective Synthesis of 2-Indolyl-3-oxoindolines or 2-(2-Aminophenyl)quinolines through Cu(II)- or Bi(III)-Catalyzed Tunable Dimerizations of 2-Alkynylanilines. Organic Letters, 2020, 22, 6810-6815.	4.6	27
30	Synthesis of α-Amidoketones through the Cascade Reaction of Carboxylic Acids with Vinyl Azides under Catalyst-Free Conditions. Journal of Organic Chemistry, 2020, 85, 13710-13720.	3.2	4
31	Solvent-Regulated Coupling of 2-Alkynylbenzaldehydes with Cyclic Amines: Selective Synthesis of Fused N-Heterocycles and Functionalized Naphthalene Derivatives. Organic Letters, 2020, 22, 9053-9058.	4.6	19
32	lridiumâ€Catalyzed Oxidative Annulation of 2â€Arylindoles with Benzoquinone Leading to Indolo[1,2â€≺i>f)]phenanthridinâ€6â€ols. Advanced Synthesis and Catalysis, 2020, 362, 3011-3020.	4.3	15
33	Selective Synthesis of Pyrazolo[1,2- <i>a</i>)]pyrazolones and 2-Acylindoles via Rh(III)-Catalyzed Tunable Redox-Neutral Coupling of 1-Phenylpyrazolidinones with Alkynyl Cyclobutanols. Organic Letters, 2020, 22, 4697-4702.	4.6	58
34	Construction of Bridged Carbocycles and Heterocycles via Rh(III)-Catalyzed C–H Alkylation/Michael Addition of 2-Arylindoles with Quinone Monoacetals. Journal of Organic Chemistry, 2020, 85, 8910-8922.	3.2	15
35	Synthesis of naphtho[1′,2′:4,5]imidazo[1,2- <i>a</i>]pyridines <i>via</i> Rh(<scp>iii</scp>)-catalyzed C–h functionalization of 2-arylimidazo[1,2- <i>a</i>)pyridines with cyclic 2-diazo-1,3-diketones featuring with a ring opening and reannulation. Organic Chemistry Frontiers, 2020, 7, 919-925.	 4.5	23
36	FeCl3-catalyzed C-3 functionalization of imidazo[1,2-a]pyridines with diazoacetonitrile under oxidantand ligand-free conditions. Tetrahedron Letters, 2020, 61, 151774.	1.4	8

#	Article	IF	CITATIONS
37	A novel synthesis of diversely functionalized 1,2,4-triones through the homo- and cross-coupling reactions of \hat{l}^2 -keto sulfoxonium ylides. Tetrahedron Letters, 2020, 61, 151912.	1.4	4
38	Rhodium-Catalyzed Selective Oxidative (Spiro)annulation of 2-Arylindoles by Using Benzoquinone as a C2 or C1 Synthon. Organic Letters, 2019, 21, 6437-6441.	4.6	48
39	Two birds with one stone: one-pot simultaneous synthesis of 2,2,2-trifluoroethylphenanthridines and benzochromenones featuring the utilization of the byproduct of Togni's reagent. Green Chemistry, 2019, 21, 5113-5117.	9.0	45
40	Synthesis of Fused or Spiro Polyheterocyclic Compounds via the Dehydrogenative Annulation Reactions of 2-Arylindazoles with Maleimides. Organic Letters, 2019, 21, 7189-7193.	4.6	100
41	A novel synthesis of 3-hydroxypiperidin-2-ones via site-selective difunctionalization of piperidine derivatives. Tetrahedron Letters, 2019, 60, 151155.	1.4	5
42	Synthesis of benzoazepine derivatives <i>via</i> Rh(<scp>iii</scp>)-catalyzed inert C(sp ²)–H functionalization and [4 + 3] annulation. Organic and Biomolecular Chemistry, 2019, 17, 8706-8710.	2.8	32
43	Synthesis of Functionalized Indole-1-oxide Derivatives via Cascade Reactions of Allenynes and tBuONO. Organic Letters, 2019, 21, 3918-3922.	4.6	22
44	Palladium-catalyzed carbonylative synthesis of indoloisoindoloquinazolinone derivatives by using CO as a carbonyl source. Tetrahedron, 2019, 75, 3355-3360.	1.9	5
45	Tunable Synthesis of Indolo[3,2- <i>c</i>)quinolines or 3-(2-Aminophenyl)quinolines via Aerobic/Anaerobic Dimerization of 2-Alkynylanilines. Organic Letters, 2019, 21, 4996-5001.	4.6	27
46	Rh(III)-Catalyzed Oxidative Spirocyclization of Isoquinolones with \hat{l}_{\pm} -Diazo-1,3-indandiones. Organic Letters, 2019, 21, 4082-4086.	4.6	41
47	Selective Cleavage and Tunable Functionalization of the C–C/C–N Bonds of <i>N</i> -Arylpiperidines Promoted by ^{<i>t</i>} BuONO. Organic Letters, 2019, 21, 1676-1680.	4.6	45
48	Rh(III)-Catalyzed Cascade Reactions of Sulfoxonium Ylides with α-Diazocarbonyl Compounds: An Access to Highly Functionalized Naphthalenones. Organic Letters, 2019, 21, 2541-2545.	4.6	123
49	Selective synthesis of \hat{l}^2 -nitrated N-heterocycles and <i>N</i> -nitroso-2-alkoxyamine aldehydes from inactivated cyclic amines promoted by ^t BuONO and oxoammonium salt. Chemical Communications, 2019, 55, 12372-12375.	4.1	23
50	Synthesis of fused imidazo[1,2- <i>a</i>]pyridines derivatives through cascade C(sp ²)–H functionalizations. Organic and Biomolecular Chemistry, 2019, 17, 9140-9150.	2.8	19
51	Synthesis of Functionalized Cyclobutaneâ€Fused Naphthalene Derivatives via Cascade Reactions of Allenynes with <i>tert</i> Allenynes with <i>tert</i>	4.3	25
52	Selective synthesis of pyrrolidin-2-ones and 3-iodopyrroles <i>via</i> the ring contraction and deformylative functionalization of piperidine derivatives. Organic and Biomolecular Chemistry, 2019, 17, 156-164.	2.8	25
53	Alkylaminoâ€Directed Oneâ€Pot Reaction of <i>N</i> â€Alkyl Anilines with CO, Amines and Aldehydes Leading to 2,3â€Dihydroquinazolinâ€4(1 <i>H</i>)â€ones. Advanced Synthesis and Catalysis, 2019, 361, 976-982.	4.3	19
54	Solvent-Dependent Copper-Catalyzed Indolyl C3-Oxygenation and N1-Cyclization Reactions: Selective Synthesis of $3 < i > H < i> -1$ and Indolo $[1,2-< i> c< i>]$ quinazolines. Journal of Organic Chemistry, 2018, 83, 3889-3896.	3.2	22

#	Article	IF	CITATIONS
55	Palladiumâ€Catalyzed Oxidative Cyclocarbonylation of Isoquinolones with CO via Câ^'H/Nâ^'H Bond Cleavage: Easy Access to Isoindolo[2,1â€ <i>b</i>) isoquinolineâ€5,7â€dione Derivatives. Advanced Synthesis and Catalysis, 2018, 360, 2537-2545.	4.3	23
56	Oneâ€Pot Synthesis of Fused <i>N,O</i> â€Heterocycles through Rh(III)â€Catalyzed Cascade Reactions of Aromatic/Vinylic <i>N</i> â€Alkoxyâ€Amides with 4â€Hydroxyâ€2â€Alkynoates. Advanced Synthesis and Catalys 2018, 360, 2613-2620.	is 4. 3	62
57	Tunable Synthesis of Functionalized Cyclohexa-1,3-dienes and 2-Aminobenzophenones/Benzoate from the Cascade Reactions of Allenic Ketones/Allenoate with Amines and Enones. Journal of Organic Chemistry, 2018, 83, 5313-5322.	3.2	18
58	Synthesis of \hat{l} ±-Formylated <i>N</i> -Heterocycles and Their 1,1-Diacetates from Inactivated Cyclic Amines Involving an Oxidative Ring Contraction. Organic Letters, 2018, 20, 864-867.	4.6	42
59	FeCl ₃ â€"Catalyzed Cascade Reactions of Cyclic Amines with 2â€Oxoâ€2â€arylacetic Acids toward Furanâ€2(5 <i>H</i>)â€one Fused <i>N,O</i> àâ€Bicyclic Compounds. Advanced Synthesis and Catalysis, 2018, 360, 261-266.	4.3	35
60	Synthesis of 2-aminobenzophenones through acylation of anilines with α-oxocarboxylic acids assisted by <i>tert</i> -butyl nitrite. Organic and Biomolecular Chemistry, 2018, 16, 7737-7747.	2.8	12
61	Synthesis of functionalized cyclopentenes through allenic ketone-based multicomponent reactions. Organic and Biomolecular Chemistry, 2018, 16, 8854-8858.	2.8	8
62	Synthesis of Diversely Functionalized 2 <i>H</i> -Chromenes through Pd-Catalyzed Cascade Reactions of 1,1-Dibromoolefin Derivatives with Arylboronic Acids. Journal of Organic Chemistry, 2018, 83, 15256-15267.	3.2	13
63	Rh(III)-Catalyzed Oxidative Annulation of Isoquinolones with Diazoketoesters Featuring an <i>in Situ</i> Deacylation: Synthesis of Isoindoloisoquinolones and Their Transformation to Rosettacin Analogues. Journal of Organic Chemistry, 2018, 83, 12034-12043.	3.2	22
64	Rhodium(III)-Catalyzed Redox-Neutral Synthesis of Isoquinolinium Salts via C–H Activation of Imines. Journal of Organic Chemistry, 2018, 83, 6477-6488.	3.2	18
65	Regioselective Synthesis of Acylated $\langle i \rangle N \langle i \rangle$ -Heterocycles via the Cascade Reactions of Saturated Cyclic Amines with 2-Oxo-2-arylacetic Acids. Journal of Organic Chemistry, 2018, 83, 6524-6533.	3.2	39
66	Cascade C H bond functionalizations of benzoyl acetonitriles/methylsulfones with cyclic 2-diazo-1,3-dicarbonyl compounds: An efficient access to diversely functionalized naphtho[1,8-bc]pyrans. Tetrahedron Letters, 2018, 59, 3094-3099.	1.4	16
67	Selective Synthesis of Benzo[<i>a</i>]Carbazoles and Indolo[2,1â€ <i>a</i>]â€Isoquinolines <i>via</i> Rh(III)â€Catalyzed Câ^H Functionalizations of 2â€Arylindoles with Sulfoxonium Ylides. Advanced Synthesis and Catalysis, 2018, 360, 3781-3787.	4.3	121
68	Regioselective Synthesis of 2-Alkenylindoles and 2-Alkenylindole-3-carboxylates through the Cascade Reactions of $\langle i \rangle N \langle i \rangle$ -Nitrosoanilines with Propargyl Alcohols. Journal of Organic Chemistry, 2018, 83, 8509-8521.	3.2	61
69	Facile and regioselective synthesis of functionalized benzenes via cascade reactions of 1,2-allenic ketones with 4-sulfonyl crotonates. Tetrahedron, 2018, 74, 4029-4035.	1.9	2
70	Front Cover Picture: Oneâ€Pot Synthesis of Fused <i>N,O</i> â€Heterocycles through Rh(III) atalyzed Cascade Reactions of Aromatic/Vinylic <i>N</i> â€Alkoxy―Amides with 4â€Hydroxyâ€2â€Alkynoates (Adv. Synth	n.)₄I § ETQ	q000 0 rgBT /
71	An I ₂ -mediated cascade reaction of 2′-bromoacetophenones with benzohydrazides/benzamides leading to quinazolino[3,2-b]cinnoline or tryptanthrin derivatives. Organic and Biomolecular Chemistry, 2017, 15, 1521-1529.	2.8	15
72	Synthesis of 3-acylquinolines through Cu-catalyzed double C(sp ³) $\hat{a}\in H$ bond functionalization of saturated ketones. Organic Chemistry Frontiers, 2017, 4, 612-616.	4. 5	37

#	Article	IF	CITATIONS
73	Synthesis of Naphthoquinolizinones through Rh(III)-Catalyzed Double C(sp ²)–H Bond Carbenoid Insertion and Annulation of 2-Aryl-3-cyanopyridines with α-Diazo Carbonyl Compounds. Organic Letters, 2017, 19, 2294-2297.	4.6	70
74	Synthesis of 4-Acylpyrazoles from Saturated Ketones and Hydrazones Featured with Multiple C(sp ³)–H Bond Functionalization and C–C Bond Cleavage and Reorganization. Journal of Organic Chemistry, 2017, 82, 7363-7372.	3.2	32
75	One-pot three-component selective synthesis of isoindolo[2,1-a]quinazoline derivatives via a palladium-catalyzed cascade cyclocondensation/cyclocarbonylation sequence. Organic and Biomolecular Chemistry, 2017, 15, 3674-3680.	2.8	20
76	C(sp3)â€"H dehydrogenation and C(sp2)â€"H alkoxy carbonylation of inactivated cyclic amines towards functionalized N-heterocycles. Chemical Communications, 2017, 53, 4002-4005.	4.1	40
77	Regio-selective synthesis of diversely substituted benzo[a]carbazoles through $Rh()ii)$ -catalyzed annulation of 2-arylindoles with $\hat{l}\pm$ -diazo carbonyl compounds. Chemical Communications, 2017, 53, 1297-1300.	4.1	121
78	Synthesis of Functionalized Pyridines via Cu(II)-Catalyzed One-Pot Cascade Reactions of Inactivated Saturated Ketones with Electron-Deficient Enamines. Journal of Organic Chemistry, 2017, 82, 11230-11237.	3.2	48
79	A convenient synthesis of 1-aryl-1H-1,2,3-triazoles from aliphatic substrates. Organic and Biomolecular Chemistry, 2017, 15, 8529-8534.	2.8	17
80	Microwaveâ€Promoted Metalâ€Free αâ€Alkylation of Ketones with Cycloalkanes through Crossâ€Coupling of C(sp ³)â~H Bonds. Asian Journal of Organic Chemistry, 2017, 6, 1445-1450.	2.7	6
81	Metal-Free Synthesis of 2-Aminobenzothiazoles via Iodine-Catalyzed and Oxygen-Promoted Cascade Reactions of Isothiocyanatobenzenes with Amines. Journal of Organic Chemistry, 2017, 82, 9637-9646.	3.2	48
82	Selective syntheses of diversely substituted 2-hydroxy-4′-hydroxybenzophenones through [4 + 2] or [3 + 3] annulation of penta-3,4-dien-2-ones with 3-formylchromones. Organic Chemistry Frontiers, 2017, 4, 1967-1971.	4.5	14
83	Selenium-catalyzed oxidative carbonylation of benzylamines to 1,3-dibenzylureas. Chemical Research in Chinese Universities, 2017, 33, 384-387.	2.6	3
84	Recent Advances in the Reactions of 1,2-Allenic Ketones and \hat{l}_{\pm} -Allenic Alcohols. Chemical Record, 2016, 16, 1635-1646.	5.8	23
85	Synthesis of 4â€Oxoâ€butâ€2â€enals through <i>t</i> BuONO and TEMPOâ€Promoted Cascade Reactions of Homoallylic Alcohols. Asian Journal of Organic Chemistry, 2016, 5, 1318-1322.	2.7	9
86	Synthesis of 2,2′-biphenols through direct C(sp ²)â€"H hydroxylation of [1,1′-biphenyl]-2-ols. Chemical Communications, 2016, 52, 10529-10532.	4.1	35
87	Pdâ€Catalyzed Cyclocarbonylation of 2â€(2â€Bromoaryl)indoles with CO as a C1 Source: Selective Access to 6 <i>H</i> à€Isoindolo[2,1â€ <i>a</i>]indolâ€6â€ones and Indeno[1,2â€ <i>b</i>]indolâ€10(5 <i>H</i>) an Asian Journal, 2016, 11, 3090-3096.	â €a nes. C	h മ തistry -
88	Palladium-Catalyzed <i>Ortho</i> -Selective Câ€"H Oxidative Carbonylation of <i>N</i> -Substituted Anilines with CO and Primary Amines for the Synthesis of <i>o</i> -Aminobenzamides. Organic Letters, 2016, 18, 4634-4637.	4.6	26
89	Synthesis of 3-Cyano-1 <i>H</i> i>indoles and Their 2′-Deoxyribonucleoside Derivatives through One-Pot Cascade Reactions. Journal of Organic Chemistry, 2016, 81, 9530-9538.	3.2	22
90	Bu ₄ Nlâ€Catalyzed and <i>t</i> BuOOHâ€Oxidized Esterification of Aldehydes with Alkyl Halides in Water. Asian Journal of Organic Chemistry, 2016, 5, 1304-1308.	2.7	5

#	Article	IF	CITATIONS
91	Regio- and Chemoselective Mono- and Bisnitration of 8-Amino quinoline Amides with Fe(NO ₃) ₃ ·9H ₂ O as Promoter and Nitro Source. Organic Letters, 2016, 18, 6054-6057.	4.6	76
92	One-Pot Cascade Reactions Leading to Pyrido [$2\hat{a}\in^2$, $1\hat{a}\in^2$:2,3]imidazo [4,5- <i>c</i>) [1,2,3]triazolo [1,5- <i>a</i>) [quinolines under Bimetallic Relay Catalysis with Air as the Oxidant. Journal of Organic Chemistry, 2016, 81, 6357-6363.	3.2	50
93	Synthesis of Indeno[$1\hat{a}\in^2$, $2\hat{a}\in^2$:4,5]imidazo[1,2- <i>a</i>]pyridin-11-ones and Chromeno[$4\hat{a}\in^2$, $3\hat{a}\in^2$:4,5]imidazo[1,2- <i>a</i>]pyridin-6-ones through Palladium-Catalyzed Cascade Reactions of 2-(2-Bromophenyl)imidazo[1,2- <i>a</i>)pyridines. Journal of Organic Chemistry, 2016, 81, 3206-3213.	3.2	29
94	Synthesis of Functionalized Phenols via the Cascade Reactions of Allenic Ketones with βâ€Diketones. Asian Journal of Organic Chemistry, 2015, 4, 368-376.	2.7	8
95	Selective Access to 3-Cyano-1 <i>H</i> indoles, 9 <i>H</i> -Pyrimido[4,5- <i>b</i>]indoles, or 9 <i>H</i> -Pyrido[2,3- <i>b</i>]indoles through Copper-Catalyzed One-Pot Multicomponent Cascade Reactions. Journal of Organic Chemistry, 2015, 80, 5444-5456.	3.2	44
96	Synthesis of Pyrazolo $[5,1-\langle i\rangle a\langle i\rangle]$ isoindoles and Pyrazolo $[5,1-\langle i\rangle a\langle i\rangle]$ isoindole-3-carboxamides through One-Pot Cascade Reactions of 1-(2-Bromophenyl) buta-2,3-dien-1-ones with Isocyanide and Hydrazine or Acetohydrazide. Journal of Organic Chemistry, 2015, 80, 7447-7455.	3.2	20
97	Synthesis of Naphtho[1′,2′:4,5]imidazo[1,2- <i>a</i>)]pyridines and Imidazo[5,1,2- <i>cd</i>)]indolizines Through Pd-Catalyzed Cycloaromatization of 2-Phenylimidazo[1,2- <i>a</i>)]pyridines with Alkynes. Journal of Organic Chemistry, 2015, 80, 7508-7518.	3.2	58
98	Synthesis of 5-isoxazol-3-yl-pyrimidine nucleosides as potential antileishmanial agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2617-2620.	2.2	13
99	Oneâ€pot Sequential Reactions Featuring a Copperâ€catalyzed Amination Leading to Pyrido[2′,1′:2,3]imidazo[4,5â€ <i>c</i>) Chemistry - an Asian Journal, 2015, 10, 1281-1285.	>]&µsinoli	ue33
100	Regioselective Synthesis of Indolo[1,2- <i>c</i>)]quinazolines and 11 <i>H</i> -Indolo[3,2- <i>c</i>]quinolines via Copper-Catalyzed Cascade Reactions of 2-(2-Bromoaryl)-1 <i>H</i> -indoles with Aldehydes and Aqueous Ammonia. Journal of Organic Chemistry, 2015, 80, 10955-10964.	3.2	34
101	Synthesis of Pyrazolo[5,1- <i>a</i>]isoquinolines and 8-Methylenepyrazolo[5,1- <i>a</i>]isoindoles via Regioselective C–C Coupling and Alkyne Hydroamination. Journal of Organic Chemistry, 2015, 80, 10536-10547.	3.2	20
102	Synthesis of Ketones through Microwave Irradiation Promoted Metal-Free Alkylation of Aldehydes by Activation of C(sp3)–H Bond. Journal of Organic Chemistry, 2015, 80, 10660-10667.	3.2	20
103	Synthesis of diversely substituted 2-(furan-3-yl)acetates from allenols through cascade carbonylations. Chemical Communications, 2015, 51, 16263-16266.	4.1	23
104	Water-Mediated Selective Synthesis of Pyrazolo $[1,5-a]$ quinazolin- 5 (4H)-ones and $[1,2,4]$ Triazolo $[1,5-a]$ quinazolin- 5 (4H)-one via Copper-Catalyzed Cascade Reactions. Synthetic Communications, 2015, 45, 2426-2435.	2.1	5
105	Synthesis of 2â€Aminoquinolineâ€3â€carboamides and Pyrimido[4,5â€ <i>b</i>]quinolinâ€4â€ones through Copperâ€Catalyzed Oneâ€pot Multicomponent Reactions. Chemistry - an Asian Journal, 2015, 10, 106-111.	3.3	19
106	Synthesis of Aminonaphthopyranones and Aminonaphthochromenones by Blaiseâ€Reactionâ€Initiated Cascade Procedures. Asian Journal of Organic Chemistry, 2014, 3, 1284-1291.	2.7	9
107	Selective Synthesis of 3-Methylene-2,3-dihydrofurans or 1,2,4-Trisubstituted Furans via Tandem Reactions of Allenic Ketones with \hat{l} ±-Chloro \hat{l} 2-Keto Esters or Ketones. Synlett, 2014, 25, 687-692.	1.8	32
108	One-pot cascade reactions of 1-arylpenta-3,4-dien-2-ones leading to 2-arylphenols and dibenzopyroanones. Chemical Communications, 2014, 50, 14968-14970.	4.1	20

#	Article	IF	Citations
109	Environmentally Sustainable and Chemoâ€selectively Favorable Synthesis of Substituted 2 <i>H</i> â€Pyranâ€2â€ones in Water under MWI. Journal of the Chinese Chemical Society, 2014, 61, 233-239.	1.4	5
110	CuCl-catalyzed one-pot synthesis of 5,6-dihydropyrazolo[1,5-c]quinazolines. Tetrahedron, 2014, 70, 2383-2388.	1.9	11
111	Sustainable and selective synthesis of 3,4-dihydroquinolizin-2-one and quinolizin-2-one derivatives via the reactions of penta-3,4-dien-2-ones. Green Chemistry, 2014, 16, 1393-1398.	9.0	18
112	Rapid assembly of quinazolinone scaffold via copper-catalyzed tandem reaction of 2-bromobenzamides with aldehydes and aqueous ammonia: application to the synthesis of the alkaloid tryptanthrin. RSC Advances, 2014, 4, 59289-59296.	3.6	53
113	Synthesis of naphthalene amino esters and arylnaphthalene lactone lignans through tandem reactions of 2-alkynylbenzonitriles. Chemical Communications, 2014, 50, 5641-5643.	4.1	27
114	Synthesis of 3-(4-oxo-4H-chromen-3-yl)acrylates through the tandem reaction of 3-(2-buta-2,3-dienoylphenoxy)acrylates. RSC Advances, 2014, 4, 15081-15086.	3.6	6
115	Highly facile and regio-selective synthesis of pyrazolo $[1,5-a]$ pyrimidines via reactions of $1,2$ -allenic ketones with aminopyrazoles. Organic and Biomolecular Chemistry, 2014, 12, 2099.	2.8	33
116	Synthesis of 1,2,3â€Trisubstituted Indolizines, Pyrrolo[1,2â€ <i>a</i>]quinolines, and Pyrrolo[2,1â€ <i>a</i>]isoquinolines from 1,2â€Allenyl Ketones. European Journal of Organic Chemistry, 2014, 2014, 713-717.	2.4	22
117	Synthesis of Quinazolines and Tetrahydroquinazolines: Copperâ€Catalyzed Tandem Reactions of 2â€Bromobenzyl Bromides with Aldehydes and Aqueous Ammonia or Amines. Chemistry - an Asian Journal, 2014, 9, 739-743.	3.3	43
118	Copperâ€Catalyzed <i>N</i> ―and <i>O</i> â€Arylation of Amides: Alternative Approaches to 3,4â€Dihydroquinolinâ€2â€ones, Quinolinâ€2â€ones, and 12 <i>H</i> â€Chromeno[2,3â€ <i>b</i>]quinolinâ€12â€uropean Journal of Organic Chemistry, 2013, 2013, 8087-8093.	â€ o .¤les.	8
119	Selective synthesis of oxygen-containing heterocycles via tandem reactions of 1,2-allenic ketones with ethyl 4-chloroacetoacetate. RSC Advances, 2013, 3, 4156.	3.6	9
120	Synthesis of Pyrazolo[1,5-c]quinazoline Derivatives through Copper-Catalyzed Tandem Reaction of 5-(2-Bromoaryl)-1H-pyrazoles with Carbonyl Compounds and Aqueous Ammonia. Journal of Organic Chemistry, 2013, 78, 3262-3270.	3.2	49
121	Cobalt(ii), nickel(ii), manganese(ii) and zinc(ii) metal–organic frameworks constructed with the newly designed 2-(pyridin-4-yl)-4,6-pyrimidine dicarboxylic acid ligand: syntheses, crystal structures and properties. CrystEngComm, 2013, 15, 4107.	2.6	10
122	Synthesis of 3,5-disubstituted pyrazoles via cyclocondensation of 1,2-allenic ketones with hydrazines: application to the synthesis of 5-(5-methyl-pyrazol-3-yl)-2′-deoxycytidine. RSC Advances, 2012, 2, 3772.	3.6	26
123	Catalyst-free synthesis of diversely substituted 6H-benzo[c]chromenes and 6H-benzo[c]chromen-6-ones in aqueous media under MWI. Green Chemistry, 2012, 14, 3429.	9.0	35
124	A Sustainable Synthesis of 2â€Benzoxazyl and 2â€Benzothiazyl Ketones from Alkynyl Bromides and 2â€Amino(thio)phenols Promoted by a Recyclable Catalytic System. Chinese Journal of Chemistry, 2012, 30, 992-996.	4.9	12
125	Tandem Reactions Leading to Benzo[<i>c</i>)chromenâ€6â€ones and 3â€Substituted Isocoumarins. European Journal of Organic Chemistry, 2012, 2012, 673-677.	2.4	46
126	Tandem reaction of 1,2-allenic ketone with \hat{l}_{\pm} -halo ketone or \hat{l}_{\pm} -halo ester in water: an efficient and sustainable synthesis of 1,3,4 \hat{a} \in 2-tricarbonyl compounds. Green Chemistry, 2011, 13, 3218.	9.0	27

#	Article	IF	CITATION
127	An economically and environmentally sustainable synthesis of 2-aminobenzothiazoles and 2-aminobenzoxazoles promoted by water. Green Chemistry, 2011, 13, 413-418.	9.0	59
128	An Efficient Synthesis of 2-Substituted Benzoxazoles via RuCl3·3H2O Catalyzed Tandem Reactions in Ionic Liquid. Chinese Journal of Chemistry, 2011, 29, 773-777.	4.9	18
129	Practical and efficient synthesis of pyrano[3,2-c]pyridone, pyrano[4,3-b]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 809-813.	2.2	124
130	A novel preparation of pyridine–urea hybrids and elucidation of their structures. Heteroatom Chemistry, 2009, 20, 362-368.	0.7	1
131	4-(4-Bromophenyl)-4,5,6,7-tetrahydro-3-methyl-6-oxo-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile ethanol solvate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1925-o1925.	0.2	0
132	A Simple Access to Chalcones via Modified Mukaiyama Aldol Condensation Promoted by Sml ₃ /TMSCl. Chinese Journal of Chemistry, 2002, 20, 198-201.	4.9	2
133	Reductive Cyclodimerization of α, β―Unsaturated Ketones Promoted by AlCl ₃ /Sm System _: A Facile Synthesis of 2â€Aroylâ€1,3,4â€triaryl Cyclopentanol Derivatives. Chinese Journal of Chemistry, 2001, 19, 616-619.	4.9	2
134	Stereoselective Synthesis of (<i>E</i>) innamates with Sm/HOAc. Chinese Journal of Chemistry, 2001, 19, 914-916.	4.9	1