
## Mariana Sendova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3372732/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nanodiamond-induced modifications of Eu-doped phosphate glasses toward photonic applications: A synergistic physico-chemical approach. Materials Advances, 2022, 3, 318-327.                 | 5.4 | 5         |
| 2  | Physico-chemical analysis of white light-emitting Eu, Dy and Cu tri-doped plasmonic glasses synthesized via nanodiamond. Solid State Communications, 2022, 352, 114840.                      | 1.9 | 1         |
| 3  | Geometric analysis of the calorimetric glass transition and fragility using constant cooling rate cycles. International Journal of Applied Glass Science, 2021, 12, 348-357.                 | 2.0 | 10        |
| 4  | Band gap analysis and correlation with glass structure in phosphate glasses melted with various allotropes of carbon. Chemical Physics, 2021, 547, 111207.                                   | 1.9 | 9         |
| 5  | Thermal and spectroscopic characterization of copper and erbium containing aluminophosphate glass. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 226, 117546. | 3.9 | 10        |
| 6  | Eu2+/Eu3+ activated phosphate glasses synthesized via melting with multi-wall carbon nanotubes.<br>Optical Materials, 2020, 109, 110336.                                                     | 3.6 | 5         |
| 7  | Nanodiamond-induced UV transparency in phosphate glasses and development of plasmonic Cu<br>nanocomposites. Journal of Non-Crystalline Solids, 2020, 544, 120193.                            | 3.1 | 5         |
| 8  | Influence of H2 Atmosphere Annealing on Plasmonic Properties of Cu-Containing Silica Films<br>Sputtered on Amorphous Silica. Plasmonics, 2020, 15, 967-974.                                  | 3.4 | 1         |
| 9  | Direct surface area measurement from digital images via brightness histogram method. Measurement<br>Science and Technology, 2020, 31, 105602.                                                | 2.6 | 1         |
| 10 | Surface kinetics analysis by direct area measurement: Laser assisted dehydration of α-FeOOH. AIP<br>Advances, 2019, 9, .                                                                     | 1.3 | 5         |
| 11 | UV-sensitized Sm3+ visible and near-IR photoluminescence in phosphate glass melted with multi-wall carbon nanotubes. Journal of Non-Crystalline Solids, 2018, 498, 455-460.                  | 3.1 | 6         |
| 12 | Synergistic thermoâ€Raman and calorimetric kinetic study of the cation modifier's role in binary metaphosphate glasses. Journal of Raman Spectroscopy, 2018, 49, 1522-1528.                  | 2.5 | 5         |
| 13 | <i>Inâ€situ</i> isothermal microâ€Raman spectroscopy reveals the activation energy of dehydration in<br>αâ€FeOOH. Journal of Raman Spectroscopy, 2017, 48, 618-622.                          | 2.5 | 7         |
| 14 | Rapid optical determination of topological insulator nanoplate thickness and oxidation. AIP Advances, 2017, 7, .                                                                             | 1.3 | 3         |
| 15 | Temperature dependent study of basal plane stacking faults in Ag:ZnO nanorods by Raman and photoluminescence spectroscopy. Materials Science in Semiconductor Processing, 2017, 69, 62-67.   | 4.0 | 9         |
| 16 | Catalyst role of Nd3+ ions for the precipitation of silver nanoparticles in phosphate glass. Journal of<br>Alloys and Compounds, 2017, 691, 44-50.                                           | 5.5 | 16        |
| 17 | Enhanced UV transparency in phosphate glasses via multi-wall carbon nanotubes. Journal of Materials<br>Chemistry C, 2016, 4, 9771-9778.                                                      | 5.5 | 16        |
| 18 | Rare earth-dependent trend of the glass transition activation energy of doped phosphate glasses:<br>Calorimetric analysis. Journal of Non-Crystalline Solids, 2016, 450, 18-22.              | 3.1 | 18        |

MARIANA SENDOVA

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Efficient Energy Transfer and Enhanced Nearâ€IR Emission in Cu <sup>+</sup> /Nd <sup>3+</sup> â€Activated<br>Aluminophosphate Glass. Journal of the American Ceramic Society, 2015, 98, 3087-3093.                                 | 3.8  | 16        |
| 20 | Temperatureâ€dependent, microâ€Raman spectroscopic study of barium titanate nanoparticles. Journal of<br>Raman Spectroscopy, 2015, 46, 25-31.                                                                                      | 2.5  | 11        |
| 21 | Near-UV sensitized 1.06Âμm emission of Nd3+ ions via monovalent copper in phosphate glass. Materials<br>Chemistry and Physics, 2015, 162, 425-430.                                                                                 | 4.0  | 13        |
| 22 | Near-IR Photoluminescence of Pr/Cu/Sn Tridoped Phosphate Glass: Nonplasmonic Material System<br>Versus Plasmonic Nanocomposite. Journal of Electronic Materials, 2015, 44, 1175-1180.                                              | 2.2  | 14        |
| 23 | Excited-state dynamics and enhanced near-IR emission in Nd3+-structurally activated aluminophosphate glass containing silver and tin. Optical Materials, 2015, 46, 88-92.                                                          | 3.6  | 10        |
| 24 | Kinetics of copper nanoparticle precipitation in phosphate glass: an isothermal plasmonic approach.<br>Physical Chemistry Chemical Physics, 2015, 17, 1241-1246.                                                                   | 2.8  | 26        |
| 25 | Real-time analysis of the "plasmonic diluent―effect: Probing Ag nanoparticle growth rate via Dy3+<br>photoluminescence quenching. Journal of Luminescence, 2015, 157, 275-279.                                                     | 3.1  | 10        |
| 26 | Sn centers-mediated enhancement of 1.53 µm emission of Er3+ ions in phosphate glass. Materials<br>Letters, 2014, 131, 344-346.                                                                                                     | 2.6  | 7         |
| 27 | Enhanced 1.53 <i>μ</i> m emission of Er3+ ions in phosphate glass via energy transfer from Cu+ ions.<br>Journal of Applied Physics, 2014, 116, .                                                                                   | 2.5  | 25        |
| 28 | Raman spectroscopic study of the size-dependent order parameter of barium titanate. Journal of Applied Physics, 2014, 115, 214104.                                                                                                 | 2.5  | 8         |
| 29 | UV-stimulated near-IR emission of Pr 3+ in phosphate glass via twofold-coordinated Sn centers.<br>Infrared Physics and Technology, 2014, 67, 359-362.                                                                              | 2.9  | 10        |
| 30 | Light-Induced Magnetization Changes in a Coordination Polymer Heterostructure of a Prussian Blue<br>Analogue and a Hofmann-like Fe(II) Spin Crossover Compound. Journal of the American Chemical<br>Society, 2014, 136, 9846-9849. | 13.7 | 61        |
| 31 | Oxidation kinetics of plasmonic Ag particles in SiO2 nanofilms: Interlinking particle size to<br>atmosphere–film–substrate system properties. Journal of Physics and Chemistry of Solids, 2013, 74,<br>1487-1491.                  | 4.0  | 5         |
| 32 | Unfolding diffusion-based Ag nanoparticle growth in SiO2 nanofilms heat-treated in air via in situ optical microspectroscopy. Optical Materials, 2013, 35, 968-972.                                                                | 3.6  | 5         |
| 33 | Plasmonic Coupling in Silver Nanocomposite Glasses. Journal of Physical Chemistry C, 2012, 116, 17764-17772.                                                                                                                       | 3.1  | 25        |
| 34 | In situ isothermal monitoring of the enhancement and quenching of Sm3+ photoluminescence in Ag<br>co-doped glass. Solid State Communications, 2012, 152, 1786-1790.                                                                | 1.9  | 30        |
| 35 | Kinetics of Ag nanoparticle growth in thick SiO2 films: An in situ optical assessment of Ostwald ripening. Materials Chemistry and Physics, 2012, 135, 282-286.                                                                    | 4.0  | 6         |
| 36 | Revealing oxidation kinetics of dielectric-embedded Ag nanoparticles via in situ optical microspectroscopy. Chemical Physics Letters, 2012, 523, 107-112.                                                                          | 2.6  | 10        |

MARIANA SENDOVA

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Real-Time Monitoring of Plasmonic Evolution in Thick Ag:SiO2Films: Nanocomposite Optical Tuning.<br>ACS Applied Materials & Interfaces, 2011, 3, 447-454.                                                                         | 8.0 | 22        |
| 38 | Tuning the electrical transport properties of double-walled carbon nanotubes by semiconductor and semi-metal filling. Journal of Applied Physics, 2011, 110, 123708.                                                              | 2.5 | 9         |
| 39 | In situ optical microspectroscopy of the growth and oxidation of silver nanoparticles in silica thin films on soda-lime glass. Materials Research Bulletin, 2011, 46, 158-165.                                                    | 5.2 | 21        |
| 40 | Supersaturation-Driven Optical Tuning of Ag Nanocomposite Glasses for Photonics: An In Situ Optical Microspectroscopy Study. Plasmonics, 2011, 6, 399-405.                                                                        | 3.4 | 30        |
| 41 | Diffusion activation energy of Ag in nanocomposite glasses determined by in situ monitoring of plasmon resonance evolution. Chemical Physics Letters, 2011, 503, 283-286.                                                         | 2.6 | 15        |
| 42 | Luminescence of trivalent samarium ions in silver and tin co-doped aluminophosphate glass. Optical<br>Materials, 2011, 33, 1215-1220.                                                                                             | 3.6 | 37        |
| 43 | Evolution of the optical properties of a silver-doped phosphate glass during thermal treatment.<br>Journal of Luminescence, 2011, 131, 535-538.                                                                                   | 3.1 | 36        |
| 44 | In situ spectroscopic determination of the activation energies for the growth of silver nanoparticles in silica nanofilms in nitrogen atmosphere. Solid State Communications, 2011, 151, 720-724.                                 | 1.9 | 12        |
| 45 | <i>In situ</i> optical microspectroscopy approach for the study of metal transport in dielectrics via temperature- and time-dependent plasmonics: Ag nanoparticles in SiO2 films. Journal of Chemical Physics, 2011, 134, 054707. | 3.0 | 15        |
| 46 | Della Robbia blue glaze: microâ€Raman temperature study and Xâ€ray fluorescence spectroscopy characterization. Journal of Raman Spectroscopy, 2010, 41, 469-472.                                                                  | 2.5 | 9         |
| 47 | Temperature dependence of Raman scattering in filled double-walled carbon nanotubes. Journal of Applied Physics, 2010, 108, 044309.                                                                                               | 2.5 | 10        |
| 48 | Micro-Raman scattering of selenium-filled double-walled carbon nanotubes: Temperature study.<br>Journal of Applied Physics, 2009, 105, 094312.                                                                                    | 2.5 | 7         |
| 49 | Comparative micro-Raman spectroscopy study of tellurium-filled double-walled carbon nanotubes.<br>Journal of Applied Physics, 2008, 103, .                                                                                        | 2.5 | 9         |
| 50 | Micro-Raman spectroscopic study of pottery fragments from the Lapatsa tomb, Cyprus, ca 2500BC.<br>Journal of Raman Spectroscopy, 2005, 36, 829-833.                                                                               | 2.5 | 39        |
| 51 | Raman spectroscopy of PbI2-filled double-walled carbon nanotubes. Journal of Applied Physics, 2005, 98, 104304.                                                                                                                   | 2.5 | 7         |
| 52 | Sub-1/4-µmPeriodic Patterns with Nd:YAG Laser and Image Transfer to Silicon Surface by Reactive Ion<br>Etching. Japanese Journal of Applied Physics, 1994, 33, 7135-7137.                                                         | 1.5 | 5         |
| 53 | Laserâ€induced subâ€halfâ€micrometer periodic structure on polymer surfaces. Applied Physics Letters,<br>1994, 64, 563-565.                                                                                                       | 3.3 | 72        |
| 54 | Laser Induced Periodic Structures on Polymer Surfaces. Materials and Manufacturing Processes, 1994,<br>9, 467-473.                                                                                                                | 4.7 | 4         |

MARIANA SENDOVA

| #  | Article                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Magnetization of fast and slow oxidized cytochrome c oxidase. Biochemistry, 1993, 32, 7855-7860.                                                       | 2.5 | 47        |
| 56 | Sub-Half-Micron Periodic Structures on Polymer Surfaces with Polarized Laser Irradiation. Japanese<br>Journal of Applied Physics, 1993, 32, 6182-6184. | 1.5 | 27        |
| 57 | Thin-Film Compounds Formation With Pulsed Laser-Plasma Fluxes. Proceedings of SPIE, 1989, 1033, 260.                                                   | 0.8 | 2         |
| 58 | Auger electron spectroscopy of laser-deposited Pb1â^'x Cd x Se films. Journal of Materials Science<br>Letters, 1988, 7, 93-94.                         | 0.5 | 2         |
| 59 | Infrared absorption of laser deposited PbSe films. Journal of Physics C: Solid State Physics, 1987, 20,<br>941-951.                                    | 1.5 | 11        |
| 60 | Laser-assisted deposition of lead salt films. Journal of Materials Science Letters, 1987, 6, 285-288.                                                  | 0.5 | 8         |
| 61 | Laser-assisted sputtering of Pb1â^'x Cd x Se films. Journal of Materials Science Letters, 1986, 5, 533-536.                                            | 0.5 | 35        |
| 62 | Optical and electrical properties of laser-deposited Pb1â^'x Cd x Se films. Journal of Materials Science<br>Letters, 1986, 5, 537-539.                 | 0.5 | 11        |
| 63 | Thermoreflectance study. I. PbSe energy band structure. Journal Physics D: Applied Physics, 1986, 19,<br>1771-1777.                                    | 2.8 | 0         |
| 64 | Rapid optical plasmonic transformation of silver-doped glass. Journal of Thermal Analysis and Calorimetry, 0, , 1.                                     | 3.6 | 0         |
| 65 | Inflection point kinetics: plasmonic transition of silver and copper doped glasses. Physical Chemistry                                                 | 2.8 | О         |