
## Anna E Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3372635/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA<br>and ZWAMPS flights. Philosophical Transactions Series A, Mathematical, Physical, and Engineering<br>Sciences, 2022, 380, 20210112.                                                  | 1.6 | 6         |
| 2  | Sea ice concentration impacts dissolved organic gases in the Canadian Arctic. Biogeosciences, 2022, 19, 1021-1045.                                                                                                                                                                      | 1.3 | 9         |
| 3  | Two decades of flask observations of atmospheric<br><i>Î`</i> (O <sub>2</sub> â`•N <sub>2&amp;<br/>CO<sub>2</sub>, and APO at stations Lutjewad (the Netherlands) and Mace<br/>Head (Ireland), and 3Åyears from Halley station (Antarctica). Earth System Science Data, 2022, 14,</sub> | 3.7 | ub&g<br>2 |
| 4  | <ul> <li><i>i`</i>&lt; sup&gt;13 C methane source signatures from tropical wetland and rice field emissions.</li> <li>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380,</li> <li>20200449.</li> </ul>                                   | 1.6 | 8         |
| 5  | Speciation of VOC emissions related to offshore North Sea oil and gas production. Atmospheric Chemistry and Physics, 2021, 21, 3741-3762.                                                                                                                                               | 1.9 | 11        |
| 6  | Facility level measurement of offshore oil and gas installations from a medium-sized airborne<br>platform: method development for quantification and source identification of methane emissions.<br>Atmospheric Measurement Techniques, 2021, 14, 71-88.                                | 1.2 | 21        |
| 7  | On the annual variability of Antarctic aerosol size distributions at Halley Research Station.<br>Atmospheric Chemistry and Physics, 2020, 20, 4461-4476.                                                                                                                                | 1.9 | 21        |
| 8  | Stratospheric Ozone Changes From Explosive Tropical Volcanoes: Modeling and Ice Core Constraints.<br>Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032290.                                                                                                          | 1.2 | 14        |
| 9  | Deposition, recycling, and archival of nitrate stable isotopes between the air–snow interface:<br>comparison between Dronning Maud Land and Dome C, Antarctica. Atmospheric Chemistry and Physics,<br>2020, 20, 5861-5885.                                                              | 1.9 | 18        |
| 10 | Underway seawater and atmospheric measurements of volatile organic compounds in the Southern<br>Ocean. Biogeosciences, 2020, 17, 2593-2619.                                                                                                                                             | 1.3 | 19        |
| 11 | First direct observation of sea salt aerosol production from blowing snow above sea ice.<br>Atmospheric Chemistry and Physics, 2020, 20, 2549-2578.                                                                                                                                     | 1.9 | 61        |
| 12 | Sea salt aerosol production via sublimating wind-blown saline snow particles over sea ice:<br>parameterizations and relevant microphysical mechanisms. Atmospheric Chemistry and Physics, 2019,<br>19, 8407-8424.                                                                       | 1.9 | 33        |
| 13 | Influence of Sea Iceâ€Derived Halogens on Atmospheric HO <sub><i>x</i></sub> as Observed in Springtime Coastal Antarctica. Geophysical Research Letters, 2019, 46, 10168-10176.                                                                                                         | 1.5 | 8         |
| 14 | Segmented flow coil equilibrator coupled to a proton-transfer-reaction mass spectrometer for<br>measurements of a broad range of volatile organic compounds in seawater. Ocean Science, 2019, 15,<br>925-940.                                                                           | 1.3 | 10        |
| 15 | Very Strong Atmospheric Methane Growth in the 4ÂYears 2014–2017: Implications for the Paris<br>Agreement. Global Biogeochemical Cycles, 2019, 33, 318-342.                                                                                                                              | 1.9 | 353       |
| 16 | Fostering multidisciplinary research on interactions between chemistry, biology, and physics within the coupled cryosphere-atmosphere system. Elementa, 2019, 7, .                                                                                                                      | 1.1 | 6         |
| 17 | Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations. Atmospheric Measurement Techniques, 2016, 9, 5461-5485.                                                                                                          | 1.2 | 3         |
| 18 | Inter-annual variability of surface ozone at coastal (Dumont d'Urville, 2004–2014) and inland<br>(Concordia, 2007–2014) sites in East Antarctica. Atmospheric Chemistry and Physics, 2016, 16, 8053-8069.                                                                               | 1.9 | 29        |

Anna E Jones

| #  | Article                                                                                                                                                                                                                                 | IF                 | CITATIONS  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|
| 19 | Particles and iodine compounds in coastal Antarctica. Journal of Geophysical Research D:<br>Atmospheres, 2015, 120, 7144-7156.                                                                                                          | 1.2                | 32         |
| 20 | HO <sub>2</sub> NO <sub>2</sub> and<br>HNO <sub>3</sub> in the coastal Antarctic winter night: a<br>"lab-in-the-field" experiment. Atmospheric Chemistry and Physics, 2014, 14,<br>11843-11851.                                         | 1.9                | 12         |
| 21 | Sea salt as an ice core proxy for past sea ice extent: A processâ€based model study. Journal of<br>Geophysical Research D: Atmospheres, 2014, 119, 5737-5756.                                                                           | 1.2                | 45         |
| 22 | High temporal resolution Br <sub>2</sub> , BrCl and BrO observations in coastal Antarctica. Atmospheric Chemistry and Physics, 2013, 13, 1329-1343.                                                                                     | 1.9                | 33         |
| 23 | The spatial scale of ozone depletion events derived from an autonomous surface ozone network in coastal Antarctica. Atmospheric Chemistry and Physics, 2013, 13, 1457-1467.                                                             | 1.9                | 13         |
| 24 | The diurnal variability of atmospheric nitrogen oxides (NO and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 547 Td (NO<br>stability and snow emissions. Atmospheric Chemistry and Physics, 2013, 13, 3045-3062.                                | <sı<br>1.9</sı<br> | ub>2<br>52 |
| 25 | Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions. Atmospheric Chemistry and Physics, 2012, 12, 6237-6271.                                                           | 1.9                | 209        |
| 26 | Summertime NO <sub>x</sub> measurements during the CHABLIS campaign:<br>can source and sink estimates unravel observed diurnal cycles?. Atmospheric Chemistry and Physics,<br>2012, 12, 989-1002.                                       | 1.9                | 36         |
| 27 | The multi-seasonal NO <sub>y</sub> budget in coastal Antarctica and its<br>link with surface snow and ice core nitrate: results from the CHABLIS campaign. Atmospheric<br>Chemistry and Physics, 2011, 11, 9271-9285.                   | 1.9                | 52         |
| 28 | A network of autonomous surface ozone monitors in Antarctica: technical description and first results. Atmospheric Measurement Techniques, 2011, 4, 645-658.                                                                            | 1.2                | 17         |
| 29 | Coupling of HO <sub>x</sub> , NO <sub>x</sub><br>and halogen chemistry in the antarctic boundary layer. Atmospheric Chemistry and Physics, 2010, 10,<br>10187-10209.                                                                    | 1.9                | 56         |
| 30 | BrO, blizzards, and drivers of polar tropospheric ozone depletion events. Atmospheric Chemistry and Physics, 2009, 9, 4639-4652.                                                                                                        | 1.9                | 98         |
| 31 | Chemistry of the Antarctic Boundary Layer and the Interface with Snow: an overview of the CHABLIS campaign. Atmospheric Chemistry and Physics, 2008, 8, 3789-3803.                                                                      | 1.9                | 73         |
| 32 | On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for<br>O <sub>3</sub> , HO <sub>x</sub> ,<br>NO <sub>x</sub> and the Hg lifetime. Atmospheric Chemistry and Physics,<br>2008, 8, 887-900. | 1.9                | 153        |
| 33 | The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on<br>evidence from snow and atmospheric measurements. Atmospheric Chemistry and Physics, 2008, 8,<br>5627-5634.                          | 1.9                | 84         |
| 34 | Boundary Layer Halogens in Coastal Antarctica. Science, 2007, 317, 348-351.                                                                                                                                                             | 6.0                | 276        |
| 35 | Observations of OH and HO <sub>2</sub> radicals in coastal Antarctica.<br>Atmospheric Chemistry and Physics, 2007, 7, 4171-4185.                                                                                                        | 1.9                | 69         |
| 36 | An overview of snow photochemistry: evidence, mechanisms and impacts. Atmospheric Chemistry and Physics, 2007, 7, 4329-4373.                                                                                                            | 1.9                | 554        |

Anna E Jones

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | OH and halogen atom influence on the variability of non-methane hydrocarbons in the Antarctic<br>Boundary Layer. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 22-38.                  | 0.8 | 69        |
| 38 | A review of surface ozone in the polar regions. Atmospheric Environment, 2007, 41, 5138-5161.                                                                                                           | 1.9 | 133       |
| 39 | A role for newly forming sea ice in springtime polar tropospheric ozone loss? Observational evidence<br>from Halley station, Antarctica. Journal of Geophysical Research, 2006, 111, .                  | 3.3 | 56        |
| 40 | What controls photochemical NO and NO2production from Antarctic snow? Laboratory<br>investigation assessing the wavelength and temperature dependence. Journal of Geophysical Research,<br>2003, 108, . | 3.3 | 76        |
| 41 | An analysis of the oxidation potential of the South Pole boundary layer and the influence of stratospheric ozone depletion. Journal of Geophysical Research, 2003, 108, .                               | 3.3 | 37        |
| 42 | Modelling photochemical NOXproduction and nitrate loss in the upper snowpack of Antarctica.<br>Geophysical Research Letters, 2002, 29, 5-1-5-4.                                                         | 1.5 | 67        |
| 43 | Measurements of NOxemissions from the Antarctic snowpack. Geophysical Research Letters, 2001, 28, 1499-1502.                                                                                            | 1.5 | 167       |
| 44 | Speciation and rate of photochemical NO and NO2production in Antarctic snow. Geophysical Research Letters, 2000, 27, 345-348.                                                                           | 1.5 | 202       |
| 45 | Investigating possible causes of the observed diurnal variability in Antarctic NOy. Geophysical<br>Research Letters, 1999, 26, 2853-2856.                                                               | 1.5 | 32        |
| 46 | Oxidized nitrogen chemistry and speciation in the Antarctic troposphere. Journal of Geophysical<br>Research, 1999, 104, 21355-21366.                                                                    | 3.3 | 80        |