Guillaume Duhamel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/337260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A strategy to reduce the sensitivity of inhomogeneous magnetization transfer (ihMT) imaging to radiofrequency transmit field variations at 3 T. Magnetic Resonance in Medicine, 2022, 87, 1346-1359.	1.9	6
2	T _{1D} â€weighted ihMT imaging – Part II. Investigating the long―and shortâ€T _{1D} components correlation with myelin content. Comparison with R ₁ and the macromolecular proton fraction. Magnetic Resonance in Medicine, 2022, 87, 2329-2346.	1.9	8
3	T _{1D} â€weighted ihMT imaging – Part I. Isolation of long―and shortâ€T _{1D} components by T _{1D} â€filtering. Magnetic Resonance in Medicine, 2022, 87, 2313-2328.	1.9	6
4	Brain grey matter perfusion in primary progressive multiple sclerosis: Mild decrease over years and regional associations with cognition and hand function. European Journal of Neurology, 2022, 29, 1741-1752.	1.7	5
5	Characterization of the cortical myeloarchitecture with inhomogeneous magnetization transfer imaging (ihMT). NeuroImage, 2021, 225, 117442.	2.1	17
	MRI assessment of multiple dipolar relaxation time (<mml:math) (xr<="" 0="" 10="" 50="" 557="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>nins:mmi=</td><td>"http://www</td></mml:math)>	nins:mmi=	"http://www
6	components in biological tissues interpreted with a generalized inhomogeneous magnetization transfer (ihMT) model. Journal of Magnetic Resonance, 2020, 311, 106668.	1.2	19
7	Sensitivity of the Inhomogeneous Magnetization Transfer Imaging Technique to Spinal Cord Damage in Multiple Sclerosis. American Journal of Neuroradiology, 2020, 41, 929-937.	1.2	16
8	Threeâ€dimensional inhomogeneous magnetization transfer with rapid gradientâ€echoÂ(3D ihMTRAGE) imaging. Magnetic Resonance in Medicine, 2020, 84, 2964-2980.	1.9	13
9	Validating the sensitivity of inhomogeneous magnetization transfer (ihMT) MRI to myelin with fluorescence microscopy. NeuroImage, 2019, 199, 289-303.	2.1	49
10	Evaluation of the Sensitivity of Inhomogeneous Magnetization Transfer (ihMT) MRI for Multiple Sclerosis. American Journal of Neuroradiology, 2018, 39, 634-641.	1.2	42
11	Whole brain inhomogeneous magnetization transfer (ihMT) imaging: Sensitivity enhancement within a steadyâ€state gradient echo sequence. Magnetic Resonance in Medicine, 2018, 79, 2607-2619.	1.9	36
12	Low duty-cycle pulsed irradiation reduces magnetization transfer and increases the inhomogeneous magnetization transfer effect. Journal of Magnetic Resonance, 2018, 296, 60-71.	1.2	25
13	Magnetization transfer from inhomogeneously broadened lines (ihMT): Improved imaging strategy for spinal cord applications. Magnetic Resonance in Medicine, 2017, 77, 581-591.	1.9	27
14	Optimization of inhomogeneous magnetization transfer (ihMT) MRI contrast for preclinical studies using dipolar relaxation time (<i>T</i> _{1D}) filtering. NMR in Biomedicine, 2017, 30, e3706.	1.6	30
15	In vivo measurement of a new source of contrast, the dipolar relaxation time, <i>T</i> _{1<i>D</i>} , using a modified inhomogeneous magnetization transfer (ihMT) sequence. Magnetic Resonance in Medicine, 2017, 78, 1362-1372.	1.9	31
16	Regionâ€specific impairment of the cervical spinal cord (SC) in amyotrophic lateral sclerosis: A preliminary study using SC templates and quantitative MRI (diffusion tensor imaging/inhomogeneous) Tj ETQq0 (0 0.ngBT /0)v ar lock 10 1
17	Fast measurement of the quadriceps femoris muscle transverse relaxation time at high magnetic field using segmented echo-planar imaging. Journal of Magnetic Resonance Imaging, 2017, 45, 356-368.	1.9	4

18	Hypoperfusion of the thalamus is associated with disability in relapsing remitting multiple sclerosis. Journal of Neuroradiology, 2017, 44, 158-164.	0.6	34

#	Article	IF	CITATIONS
19	Minimizing the effects of magnetization transfer asymmetry on inhomogeneous magnetization transfer (ihMT) at ultra-high magnetic field (11.75ÅT). Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 699-709.	1.1	19
20	Tract-specific and age-related variations of the spinal cord microstructure: a multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT). NMR in Biomedicine, 2016, 29, 817-832.	1.6	60
21	Fast imaging strategies for mouse kidney perfusion measurement with pseudocontinuous arterial spin labeling (pCASL) at ultra high magnetic field (11.75 tesla). Journal of Magnetic Resonance Imaging, 2015, 42, 999-1008.	1.9	11
22	Heterogeneity of Muscle Damage Induced by Electrostimulation. Medicine and Science in Sports and Exercise, 2015, 47, 166-175.	0.2	16
23	Magnetization transfer from inhomogeneously broadened lines (ihMT): Experimental optimization of saturation parameters for human brain imaging at 1.5 Tesla. Magnetic Resonance in Medicine, 2015, 73, 2111-2121.	1.9	43
24	Magnetization transfer from inhomogeneously broadened lines: A potential marker for myelin. Magnetic Resonance in Medicine, 2015, 73, 614-622.	1.9	116
25	Localized Metabolic and T2 Changes Induced by Voluntary and Evoked Contractions. Medicine and Science in Sports and Exercise, 2015, 47, 921-930.	0.2	19
26	Myeloid HIFs Are Dispensable for Resolution of Inflammation during Skeletal Muscle Regeneration. Journal of Immunology, 2015, 194, 3389-3399.	0.4	21
27	Interpretation of magnetization transfer from inhomogeneously broadened lines (ihMT) in tissues as a dipolar order effect within motion restricted molecules. Journal of Magnetic Resonance, 2015, 260, 67-76.	1.2	62
28	Time Course of Central and Peripheral Alterations after Isometric Neuromuscular Electrical Stimulation-Induced Muscle Damage. PLoS ONE, 2014, 9, e107298.	1.1	19
29	Highâ€resolution mouse kidney perfusion imaging by pseudoâ€continuous arterial spin labeling at 11.75T. Magnetic Resonance in Medicine, 2014, 71, 1186-1196.	1.9	16
30	Highâ€field (11.75T) multimodal MR imaging of exercising hindlimb mouse muscles using a nonâ€invasive combined stimulation and force measurement device. NMR in Biomedicine, 2014, 27, 870-879.	1.6	5
31	In vivo short TE localized ¹ H MR spectroscopy of mouse cervical spinal cord at very high magnetic field (11.75 T). Magnetic Resonance in Medicine, 2013, 69, 1226-1232.	1.9	3
32	Multimodal MRI and 31P-MRS Investigations of the ACTA1(Asp286Gly) Mouse Model of Nemaline Myopathy Provide Evidence of Impaired In Vivo Muscle Function, Altered Muscle Structure and Disturbed Energy Metabolism. PLoS ONE, 2013, 8, e72294.	1.1	15
33	Pseudoâ€continuous arterial spin labeling at very high magnetic field (11.75 T) for highâ€resolution mouse brain perfusion imaging. Magnetic Resonance in Medicine, 2012, 67, 1225-1236.	1.9	21
34	Spinal Cord – MR of Rodent Models. Methods in Molecular Biology, 2011, 771, 355-383.	0.4	3
35	Cerebral Perfusion MRI in Mice. Methods in Molecular Biology, 2011, 771, 117-138.	0.4	3
36	Echo planar diffusion tensor imaging of the mouse spinal cord at thoracic and lumbar levels: A feasibility study. Magnetic Resonance in Medicine, 2010, 63, 1125-1134.	1.9	6

GUILLAUME DUHAMEL

#	Article	IF	CITATIONS
37	Mouse lumbar and cervical spinal cord blood flow measurements by arterial spin labeling: Sensitivity optimization and first application. Magnetic Resonance in Medicine, 2009, 62, 430-439.	1.9	27
38	Spinal cord blood flow measurement by arterial spin labeling. Magnetic Resonance in Medicine, 2008, 59, 846-854.	1.9	38
39	Experimental comparison of four FAIR arterial spin labeling techniques for quantification of mouse cerebral blood flow at 4.7 T. NMR in Biomedicine, 2008, 21, 781-792.	1.6	28
40	Shortâ€scanâ€ŧime multiâ€slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging. NMR in Biomedicine, 2008, 21, 868-877.	1.6	14
41	In vivo mouse spinal cord imaging using echo-planar imaging at 11.75 T. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2007, 20, 169-173.	1.1	14
42	Combined T2* and T1 measurements for improved perfusion and permeability studies in high field using dynamic contrast enhancement. European Radiology, 2006, 16, 2083-2091.	2.3	67
43	Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: Comparison of physical simulations with in vivo results. Magnetic Resonance in Medicine, 2006, 55, 514-523.	1.9	44
44	Efficiency of inversion pulses for background suppressed arterial spin labeling. Magnetic Resonance in Medicine, 2005, 54, 366-372.	1.9	233
45	Imaging Experimental Cerebral Malaria In Vivo: Significant Role of Ischemic Brain Edema. Journal of Neuroscience, 2005, 25, 7352-7358.	1.7	151
46	Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma1. Academic Radiology, 2005, 12, 347-357.	1.3	108
47	Laser-Polarized Xenon Nuclear Magnetic Resonance, a Potential Tool for Brain Perfusion Imaging: Measurement of the Xenon T1In Vivo. Methods in Enzymology, 2004, 385, 149-165.	0.4	3
48	MR Imaging Relaxation Times of Abdominal and Pelvic Tissues Measured in Vivo at 3.0 T: Preliminary Results. Radiology, 2004, 230, 652-659.	3.6	693
49	Method to determine in vivo the relaxation timeT1 of hyperpolarized xenon in rat brain. Magnetic Resonance in Medicine, 2003, 49, 1014-1018.	1.9	22
50	Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain. Magnetic Resonance in Medicine, 2003, 50, 145-153.	1.9	65
51	Global and Regional Cerebral Blood Flow Measurements Using NMR of Injected Hyperpolarized Xenon-129. Academic Radiology, 2002, 9, S498-S500.	1.3	30
52	Rat lung MRI using low-temperature prepolarized helium-3. Magnetic Resonance in Medicine, 2001, 45, 1130-1133.	1.9	3
53	Xenon-129 MR imaging and spectroscopy of rat brain using arterial delivery of hyperpolarized xenon in a lipid emulsion. Magnetic Resonance in Medicine, 2001, 46, 208-212.	1.9	65
54	In vivo 129Xe NMR in rat brain during intra-arterial injection of hyperpolarized 129Xe dissolved in a lipid emulsion. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 2000, 323, 529-53	36. ^{0.8}	27

#	Article	IF	CITATIONS
55	Low-temperature polarized helium-3 for MRI applications. Magnetic Resonance in Medicine, 1999, 41, 1084-1087.	1.9	6