Zihang Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/3372478/zihang-liu-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

69
papers

3,553
citations

34
h-index

59
g-index

71
ext. papers

4,609
ext. citations

12.1
avg, IF

L-index

#	Paper	IF	Citations
69	High thermoelectric cooling performance of n-type MgBi-based materials. <i>Science</i> , 2019 , 365, 495-498	33.3	240
68	Advances in thermoelectrics. <i>Advances in Physics</i> , 2018 , 67, 69-147	18.4	225
67	Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type MgSb-based materials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 10548-10553	11.5	183
66	Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. <i>Nature Communications</i> , 2019 , 10, 270	17.4	155
65	Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. <i>Nature Communications</i> , 2018 , 9, 2497	17.4	154
64	Size effect in thermoelectric materials. Npj Quantum Materials, 2016, 1,	5	154
63	Grain Boundary Engineering for Achieving High Thermoelectric Performance in n-Type Skutterudites. <i>Advanced Energy Materials</i> , 2017 , 7, 1602582	21.8	146
62	Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5332-5337	11.5	130
61	Defect Engineering for Realizing High Thermoelectric Performance in n-Type Mg3Sb2-Based Materials. <i>ACS Energy Letters</i> , 2017 , 2, 2245-2250	20.1	130
60	Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure. <i>Nano Energy</i> , 2018 , 52, 246-255	17.1	117
59	Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1-xCaxMg2Bi2 by band engineering and strain fluctuation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E4125-32	11.5	109
58	Lithium Doping to Enhance Thermoelectric Performance of MgAgSb with Weak Electron Phonon Coupling. <i>Advanced Energy Materials</i> , 2016 , 6, 1502269	21.8	96
57	High thermoelectric performance of EMgAgSb for power generation. <i>Energy and Environmental Science</i> , 2018 , 11, 23-44	35.4	94
56	Thermoelectric properties of Na-doped Zintl compound: Mg3Na Sb2. <i>Acta Materialia</i> , 2015 , 93, 187-193	8.4	91
55	Thermoelectric properties of materials near the band crossing line in Mg2SnMg2GeMg2Si system. <i>Acta Materialia</i> , 2016 , 103, 633-642	8.4	85
54	Nano-microstructural control of phonon engineering for thermoelectric energy harvesting. <i>MRS Bulletin</i> , 2018 , 43, 181-186	3.2	80
53	Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers. <i>Nature Communications</i> , 2018 , 9, 1721	17.4	77

(2018-2021)

Demonstration of ultrahigh thermoelectric efficiency of ~7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. <i>Joule</i> , 2021 , 5, 1196-1208	27.8	70
Thermoelectric properties of Bi-based Zintl compounds Ca1\(\mathbb{H}\)YbxMg2Bi2. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4312-4320	13	69
Anomalous electrical conductivity of n-type Te-doped Mg3.2Sb1.5Bi0.5. <i>Materials Today Physics</i> , 2017 , 3, 1-6	8	67
Tellurium doped n-type Zintl Zr3Ni3Sb4 thermoelectric materials: Balance between carrier-scattering mechanism and bipolar effect. <i>Materials Today Physics</i> , 2017 , 2, 54-61	8	56
High thermoelectric power factor in Cu N ii alloy originate from potential barrier scattering of twin boundaries. <i>Nano Energy</i> , 2015 , 17, 279-289	17.1	56
Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles. <i>Nano Energy</i> , 2015 , 13, 554-562	17.1	55
Phonon scattering by nanoscale twin boundaries. <i>Nano Energy</i> , 2017 , 32, 174-179	17.1	54
Enhancement of thermoelectric performance of phase pure Zintl compounds Ca1¶b Zn2Sb2, Ca1¶u Zn2Sb2, and Eu1¶b Zn2Sb2 by mechanical alloying and hot pressing. <i>Nano Energy</i> , 2016 , 25, 136-144	17.1	54
Mechanical properties of nanostructured thermoelectric materials EMgAgSb. <i>Scripta Materialia</i> , 2017 , 127, 72-75	5.6	50
Thermoelectric Properties of n-type ZrNiPb-Based Half-Heuslers. Chemistry of Materials, 2017, 29, 867-8	B 3 26	48
Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. <i>Chemical Engineering Journal</i> , 2018 , 354, 1164-1173	14.7	48
High Power Factor and Enhanced Thermoelectric Performance in Sc and Bi Codoped GeTe: Insights into the Hidden Role of Rhombohedral Distortion Degree. <i>Advanced Energy Materials</i> , 2020 , 10, 200258	8 ^{21.8}	45
The effect of nickel doping on electron and phonon transport in the n-type nanostructured thermoelectric material CoSbS. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10442-10450	7.1	40
Understanding and manipulating the intrinsic point defect in EMgAgSb for higher thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16834-16840	13	39
Design of High-Performance Disordered Half-Heusler Thermoelectric Materials Using 18-Electron Rule. <i>Advanced Functional Materials</i> , 2019 , 29, 1905044	15.6	38
Effects of antimony content in MgAg0.97Sbx on output power and energy conversion efficiency. <i>Acta Materialia</i> , 2016 , 102, 17-23	8.4	37
The influence of doping sites on achieving higher thermoelectric performance for nanostructured <code>HMgAgSb</code> . <i>Nano Energy</i> , 2017 , 31, 194-200	17.1	35
Ultrahigh Power Factor in Thermoelectric System NbMFeSb (M = Hf, Zr, and Ti). <i>Advanced Science</i> , 2018 , 5, 1800278	13.6	31
	Thermoelectric properties of Bi-based Zintl compounds Ca1RYbxMg2Bi2. Journal of Materials Chemistry A, 2016, 4, 4312-4320 Anomalous electrical conductivity of n-type Te-doped Mg3.2Sb1.5Bi0.5. Materials Today Physics, 2017, 3, 1-6 Tellurium doped n-type Zintl Zr3Ni3Sb4 thermoelectric materials: Balance between carrier-scattering mechanism and bipolar effect. Materials Today Physics, 2017, 2, 54-61 High thermoelectric power factor in CuBii alloy originate from potential barrier scattering of twin boundaries. Nano Energy, 2015, 17, 279-289 Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles. Nano Energy, 2015, 13, 554-562 Phonon scattering by nanoscale twin boundaries. Nano Energy, 2017, 32, 174-179 Enhancement of thermoelectric performance of phase pure Zintl compounds Ca18b Zn2Sb2, Ca18u Zn2Sb2, and Eu18b Zn2Sb2 by mechanical alloying and hot pressing. Nano Energy, 2016, 25, 136-144 Mechanical properties of nanostructured thermoelectric materials BMgAgSb. Scripta Materialia, 2017, 127, 72-75 Thermoelectric Properties of n-type ZrNiPb-Based Half-Heuslers. Chemistry of Materials, 2017, 29, 867-67 Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. Chemical Engineering Journal, 2018, 354, 1164-1173 High Power Factor and Enhanced Thermoelectric Performance in Sc and Bi Codoped GeTe: Insights into the Hidden Role of Rhombohedral Distortion Degree. Advanced Energy Materials, 2020, 10, 200258 The effect of nickel doping on electron and phonon transport in the n-type nanostructured thermoelectric material CoSbS. Journal of Materials Chemistry A, 2016, 4, 16834-16840 Design of High-Performance Disordered Half-Heusler Thermoelectric Materials Using 18-Electron Rule. Advanced Functional Materials, 2019, 29, 1905044 Effects of antimony content in MgAg0.97Sbx on output power and energy conversion efficiency. Acta Materialia, 2016, 102, 17-23	Thermoelectric properties of Bi-based Zint1 compounds Ca1\(^2\)YbMg2Bi2. Journal of Materials Chemistry A, 2016, 4, 4312-4320 Anomalous electrical conductivity of n-type Te-doped Mg3.2Sb1.5Bi0.5. Materials Today Physics, 2017, 3, 1-6 Tellurium doped n-type Zint1 Zr3Ni3Sb4 thermoelectric materials: Balance between carrier-scattering mechanism and bipolar effect. Materials Today Physics, 2017, 2, 54-61 High thermoelectric power factor in CuBi alloy originate from potential barrier scattering of twin High thermoelectric power factor in CuBi alloy originate from potential barrier scattering of twin High thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles. Nano Energy, 2015, 17, 279-289 Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles. Nano Energy, 2015, 13, 554-562 Phonon scattering by nanoscale twin boundaries. Nano Energy, 2017, 32, 174-179 17.1 Enhancement of thermoelectric performance of phase pure Zintt compounds Ca1\(^3\)b Zn2Sb2, Ca1\(^3\)b Zn2Sb2, and Eu1\(^3\)b Zn2Sb2 by mechanical alloying and hot pressing. Nano Energy, 2016, 25, 136-144 Mechanical properties of nanostructured thermoelectric materials PMgAgSb. Scripta Materials, 2017, 127, 72-75 Thermoelectric Properties of n-type ZrNiPb-Based Half-Heuslers. Chemistry of Materials, 2017, 29, 867-8326 Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. Chemical Engineering Journal, 2018, 354, 1164-1173 14-7 High Power Factor and Enhanced Thermoelectric Performance in Sc and Bi Codoped GeTe: Insights into the Hidden Role of Rhombohedral Distortion Degree. Advanced Energy Materials, 2020, 10, 2002588 ²¹⁻⁸ The effect of nickel doping on electron and phonon transport in the n-type nanostructured thermoelectric material CoSbS. Journal of Materials Chemistry A, 2016, 4, 16834-16840 130 Design of High-Performance Disordered Half-Heu

34	The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSb. <i>Acta Materialia</i> , 2017 , 128, 227-234	8.4	30
33	Extraordinary Thermoelectric Performance Realized in Hierarchically Structured AgSbSe with Ultralow Thermal Conductivity. <i>ACS Applied Materials & Discrete </i>	9.5	30
32	Understanding the asymmetrical thermoelectric performance for discovering promising thermoelectric materials. <i>Science Advances</i> , 2019 , 5, eaav5813	14.3	27
31	Enhanced thermoelectric performance of p -type filled skutterudites via the coherency strain fields from spinodal decomposition. <i>Acta Materialia</i> , 2015 , 98, 405-415	8.4	26
30	Thermoelectric performance enhancement of Mg2Sn based solid solutions by band convergence and phonon scattering via Pb and Si/Ge substitution for Sn. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 20726-37	3.6	26
29	Enhancement of thermoelectric properties by Na doping in Te-free p-type AgSbSe2. <i>Dalton Transactions</i> , 2015 , 44, 1046-51	4.3	25
28	Thermoelectric properties of Zintl compound Ca1\(\text{NaxMg2Bi1.98}\). Applied Physics Letters, 2016 , 108, 183901	3.4	24
27	Self-compensation induced vacancies for significant phonon scattering in InSb. <i>Nano Energy</i> , 2018 , 48, 189-196	17.1	23
26	Influence of Carrier Density and Energy Barrier Scattering on a High Seebeck Coefficient and Power Factor in Transparent Thermoelectric Copper Iodide. <i>ACS Applied Energy Materials</i> , 2020 , 3, 10037-1004	44 ^{6.1}	21
25	Contrasting the Role of Mg and Ba Doping on the Microstructure and Thermoelectric Properties of p-Type AgSbSe2. <i>ACS Applied Materials & Doping on the Microstructure and Thermoelectric Properties of Properties of AgSbSe2. ACS Applied Materials & Doping on the Microstructure and Thermoelectric Properties of Pr</i>	9.5	20
24	Shaping the role of germanium vacancies in germanium telluride: metastable cubic structure stabilization, band structure modification, and stable N-type conduction. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	19
23	High thermoelectric performance of single phase p-type cerium-filled skutterudites by dislocation engineering. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20128-20137	13	15
22	Enhanced thermoelectric and mechanical properties of p-type skutterudites with in situ formed Fe3Si nanoprecipitate. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 1697-1703	6.8	13
21	Improved thermoelectric performance of GeTe via efficient yttrium doping. <i>Applied Physics Letters</i> , 2021 , 118, 033901	3.4	11
20	A material catalogue with glass-like thermal conductivity mediated by crystallographic occupancy for thermoelectric application. <i>Energy and Environmental Science</i> , 2021 , 14, 3579-3587	35.4	11
19	Role of phase separation in nanocomposite indium-tin-oxide films for transparent thermoelectric applications. <i>Journal of Materiomics</i> , 2021 , 7, 612-620	6.7	10
18	Maximizing the performance of n-type MgBi based materials for room-temperature power generation and thermoelectric cooling <i>Nature Communications</i> , 2022 , 13, 1120	17.4	10
17	Prediction of improved thermoelectric performance by ordering in double half-Heusler materials. Journal of Materials Chemistry A, 2020 , 8, 23590-23598	13	9

LIST OF PUBLICATIONS

16	New insights into the role of dislocation engineering in N-type filled skutterudite CoSb3. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 13622-13631	7.1	9
15	Fresh MoO2 as a better electrode for pseudocapacitive sodium-ion storage. <i>New Journal of Chemistry</i> , 2018 , 42, 14721-14724	3.6	7
14	The critical role of boron doping in the thermoelectric and mechanical properties of nanostructured EMgAgSb. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 9821-9827	7.1	6
13	Significant off-stoichiometry effect leading to the N-type conduction and ferromagnetic properties in titanium doped Fe2VAl thin films. <i>Acta Materialia</i> , 2020 , 200, 848-856	8.4	5
12	Thermoelectric Performance of Cr Doped and Cr-Fe Double-Doped Higher Manganese Silicides with Adjusted Carrier Concentration and Significant Electron-Phonon Interaction. <i>ACS Applied Materials & Materials (Materials Applied Materials Applied Materials Materials Applied Materials Materials (Materials Applied Materials Applied Materials Applied Materials Applied Materials (Materials Applied Materials Applied Materials Applied Materials Applied Materials (Materials Applied Materials Applied Materials Applied Materials Applied Materials Applied Materials (Materials Applied Materials Applied Materials Applied Materials Applied Materials Applied Materials Applied Materials (Materials Applied Materials Applied Materials Applied Materials Applied Materials Applied Materials Applied Materials (Materials Applied Materials Applied Materials Applied Materials Applied Materials Applied Materials Applied Materials (Materials Applied Materials Applied Materials Applied Materials Applied Materials Applied Materials Applied Materials (Materials Applied Materials Applied Mate</i>	9.5	5
11	Effect of native defects on thermoelectric properties of copper iodide films. <i>Emergent Materials</i> , 2021 , 4, 761-768	3.5	4
10	Mediating Point Defects Endows n-Type Bi Te with High Thermoelectric Performance and Superior Mechanical Robustness for Power Generation Application <i>Small</i> , 2022 , e2201352	11	3
9	Effect of Cd isoelectronic substitution on thermoelectric properties of Zn0.995Na0.005Sb. <i>Journal of Materiomics</i> , 2016 , 2, 324-330	6.7	2
8	Nanostructured Bulk Thermoelectric Materials for Energy Harvesting. <i>NIMS Monographs</i> , 2022 , 199-231	I 0.3	1
7	Constructing multi-type defects in In0.1Sb1.9Te3-(MgB2) composites: Simultaneously enhancing the thermoelectric and mechanical properties. <i>Nano Energy</i> , 2021 , 90, 106530	17.1	1
6	Nanotwins Strengthening High Thermoelectric Performance Bismuth Antimony Telluride Alloys <i>Advanced Science</i> , 2022 , e2200432	13.6	1
5	High-performance lead-free cubic GeTe-based thermoelectric alloy. <i>Cell Reports Physical Science</i> , 2022 , 100902	6.1	1
4	High Thermoelectric Performance of CaMg 2 Bi 2 Enabled by Dynamic Doping and Orbital Alignment. <i>Advanced Functional Materials</i> ,2200407	15.6	O
3	Electronic Orbital Alignment and Hierarchical Phonon Scattering Enabling High Thermoelectric Performance p-Type MgSb Zintl Compounds <i>Research</i> , 2022 , 2022, 9842949	7.8	O
2	Improved thermoelectric and mechanical performance of Sb2Te3 based materials towards the segmented operation. <i>Materials Today Energy</i> , 2022 , 101045	7	О
1	Materials for Near-Room Temperatures 2017 , 67-106		