Benjamin L Kidder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3372272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SWI/SNF-Brg1 Regulates Self-Renewal and Occupies Core Pluripotency-Related Genes in Embryonic Stem Cells. Stem Cells, 2009, 27, 317-328.	3.2	221
2	ChIP-Seq: technical considerations for obtaining high-quality data. Nature Immunology, 2011, 12, 918-922.	14.5	199
3	Stat3 and c-Myc Genome-Wide Promoter Occupancy in Embryonic Stem Cells. PLoS ONE, 2008, 3, e3932.	2.5	166
4	KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation. Genome Biology, 2014, 15, R32.	9.6	120
5	Examination of transcriptional networks reveals an important role for TCFAP2C, SMARCA4, and EOMES in trophoblast stem cell maintenance. Genome Research, 2010, 20, 458-472.	5.5	118
6	Islet-Derived Fibroblast-Like Cells Are Not Derived via Epithelial-Mesenchymal Transition From Pdx-1 or Insulin-Positive Cells. Diabetes, 2007, 56, 3-7.	0.6	111
7	HDAC1 regulates pluripotency and lineage specific transcriptional networks in embryonic and trophoblast stem cells. Nucleic Acids Research, 2012, 40, 2925-2939.	14.5	99
8	KDM5B is a master regulator of the H3K4-methylome in stem cells, development and cancer. Seminars in Cancer Biology, 2019, 57, 79-85.	9.6	74
9	Extended Self-Renewal and Accelerated Reprogramming in the Absence of Kdm5b. Molecular and Cellular Biology, 2013, 33, 4793-4810.	2.3	58
10	Integrative pan cancer analysis reveals epigenomic variation in cancer type and cell specific chromatin domains. Nature Communications, 2021, 12, 1419.	12.8	46
11	SMYD5 regulates H4K20me3-marked heterochromatin to safeguard ES cell self-renewal and prevent spurious differentiation. Epigenetics and Chromatin, 2017, 10, 8.	3.9	45
12	H3K4 demethylase KDM5B regulates global dynamics of transcription elongation and alternative splicing in embryonic stem cells. Nucleic Acids Research, 2017, 45, 6427-6441.	14.5	42
13	Generation of Tumor Antigen-Specific iPSC-Derived Thymic Emigrants Using a 3D Thymic Culture System. Cell Reports, 2018, 22, 3175-3190.	6.4	35
14	Mdig promotes oncogenic gene expression through antagonizing repressive histone methylation markers. Theranostics, 2020, 10, 602-614.	10.0	27
15	SMYD5 Controls Heterochromatin and Chromosome Integrity during Embryonic Stem Cell Differentiation. Cancer Research, 2017, 77, 6729-6745.	0.9	23
16	H4K20me3 co-localizes with activating histone modifications at transcriptionally dynamic regions in embryonic stem cells. BMC Genomics, 2018, 19, 514.	2.8	23
17	KDM5B decommissions the H3K4 methylation landscape of self-renewal genes during trophoblast stem cell differentiation. Biology Open, 2018, 7, .	1.2	20
18	Embryonic Stem Cells Contribute to Mouse Chimeras in the Absence of Detectable Cell Fusion. Cloning and Stem Cells, 2008, 10, 231-248.	2.6	17

Benjamin L Kidder

#	Article	IF	CITATIONS
19	Efficient Library Preparation for Next-Generation Sequencing Analysis of Genome-Wide Epigenetic and Transcriptional Landscapes in Embryonic Stem Cells. Methods in Molecular Biology, 2014, 1150, 3-20.	0.9	17
20	The Amino-terminal Domain of the Androgen Receptor Co-opts Extracellular Signal-regulated Kinase (ERK) Docking Sites in ELK1 Protein to Induce Sustained Gene Activation That Supports Prostate Cancer Cell Growth. Journal of Biological Chemistry, 2016, 291, 25983-25998.	3.4	16
21	Strategy for Tumor-Selective Disruption of Androgen Receptor Function in the Spectrum of Prostate Cancer. Clinical Cancer Research, 2018, 24, 6509-6522.	7.0	15
22	In Vitro Maturation and In Vitro Fertilization of Mouse Oocytes and Preimplantation Embryo Culture. Methods in Molecular Biology, 2014, 1150, 191-199.	0.9	12
23	H4K20me3 methyltransferase SUV420H2 shapes the chromatin landscape of pluripotent embryonic stem cells. Development (Cambridge), 2020, 147, .	2.5	11
24	OCT4 supports extended LIF-independent self-renewal and maintenance of transcriptional and epigenetic networks in embryonic stem cells. Scientific Reports, 2017, 7, 16360.	3.3	10
25	Contribution of H3K4 demethylase KDM5B to nucleosome organization in embryonic stem cells revealed by micrococcal nuclease sequencing. Epigenetics and Chromatin, 2019, 12, 20.	3.9	8
26	H3K4 demethylase KDM5B regulates cancer cell identity and epigenetic plasticity. Oncogene, 2022, 41, 2958-2972.	5.9	8
27	Identification of H4K20me3- and H3K4me3-associated RNAs using CARIP-Seq expands the transcriptional and epigenetic networks of embryonic stem cells. Journal of Biological Chemistry, 2018, 293, 15120-15135.	3.4	7
28	Derivation and Manipulation of Trophoblast Stem Cells from Mouse Blastocysts. Methods in Molecular Biology, 2014, 1150, 201-212.	0.9	7
29	Generation of Induced Pluripotent Stem Cells Using Chemical Inhibition and Three Transcription Factors. Methods in Molecular Biology, 2014, 1150, 227-236.	0.9	3
30	CARIP-Seq and ChIP-Seq: Methods to Identify Chromatin-Associated RNAs and Protein-DNA Interactions in Embryonic Stem Cells. Journal of Visualized Experiments, 2018, , .	0.3	2
31	Culture of haploid blastocysts in FGF4 favors the derivation of epiblast stem cells with a primed epigenetic and transcriptional landscape. Scientific Reports, 2018, 8, 10775.	3.3	2
32	Direct Reprogramming of Mouse Embryonic Fibroblasts to Induced Trophoblast Stem Cells. Methods in Molecular Biology, 2020, 2117, 285-292.	0.9	2
33	Simultaneous Derivation of Embryonic and Trophoblast Stem Cells from Mouse Blastocysts. Methods in Molecular Biology, 2020, 2117, 235-241.	0.9	1
34	Derivation of LIF-Independent Embryonic Stem Cells Using Inducible OCT4 Expression. Methods in Molecular Biology, 2020, 2117, 229-234.	0.9	1
35	Derivation of Maternal Epiblast Stem Cells from Haploid Embryos. Methods in Molecular Biology, 2020, 2117, 219-227.	0.9	0