
Iwona A Zur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3371884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress in Doubled Haploid Technology in Higher Plants. , 2009, , 1-33.		81
2	Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (x Triticosecale Wittm.). Plant Cell Reports, 2009, 28, 1279-1287.	2.8	55
3	Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability. Plant Science, 2003, 164, 1019-1028.	1.7	47
4	Hormonal requirements for effective induction of microspore embryogenesis in triticale ($ ilde{A}$ —) Tj ETQq0 0 0 rgBT	Overlock 2	10 Tf 50 622 43
5	Antioxidant activity and ROS tolerance in triticale (×Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell, Tissue and Organ Culture, 2014, 119, 79-94.	1.2	42
6	Stress-induced changes important for effective androgenic induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell, Tissue and Organ Culture, 2008, 94, 319-328.	1.2	41
7	Quantitative trait loci associated with androgenic responsiveness in triticale (×Triticosecale Wittm.) anther culture. Plant Cell Reports, 2012, 31, 2099-2108.	2.8	39
8	β-1,3-glucanase and chitinase activities in winter triticales during cold hardening and subsequent infection by Microdochium nivale. Biologia (Poland), 2013, 68, 241-248.	0.8	34
9	Current insights into hormonal regulation of microspore embryogenesis. Frontiers in Plant Science, 2015, 6, 424.	1.7	34
10	Identification of QTLs associated with albino plant formation and some new facts concerning green versus albino ratio determinants in triticale (A—Triticosecale Wittm.) anther culture. Euphytica, 2015, 206, 263-278.	0.6	30
11	Glutathione provides antioxidative defence and promotes microspore-derived embryo development in isolated microspore cultures of triticale (× Triticosecale Wittm.). Plant Cell Reports, 2019, 38, 195-209.	2.8	27
12	The influence of heat stress on auxin distribution in transgenic B. napus microspores and microspore-derived embryos. Protoplasma, 2014, 251, 1077-1087.	1.0	25
13	The effect of glutathione and mannitol on androgenesis in anther and isolated microspore cultures of rye (Secale cereale L.). Plant Cell, Tissue and Organ Culture, 2020, 140, 577-592.	1.2	23
14	Endogenous ABA concentration and cytoplasmic membrane fluidity in microspores of oilseed rape (Brassica napus L.) genotypes differing in responsiveness to androgenesis induction. Plant Cell Reports, 2013, 32, 1465-1475.	2.8	22
15	Changes in gene expression patterns associated with microspore embryogenesis in hexaploid triticale (×Triticosecale Wittm.). Plant Cell, Tissue and Organ Culture, 2014, 116, 261-267.	1.2	22
16	Photosynthesis-dependent physiological and genetic crosstalk between cold acclimation and cold-induced resistance to fungal pathogens in triticale (Triticosecale Wittm.). Journal of Plant Physiology, 2015, 177, 30-43.	1.6	22
17	Identifying QTLs for cold-induced resistance to <i>Microdochium nivale</i> in winter triticale. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 296-299.	0.4	20
18	Molecular mapping of loci associated with abscisic acid accumulation in triticale (\tilde{A} —Triticosecale) Tj ETQq0 0 0	rgBT /Over 1.8	lock 10 Tf 50 20

18 Growth Regulation, 2012, 68, 483-492.

Iwona A Zur

#	Article	IF	CITATIONS
19	Chemically-induced DNA de-methylation alters the effectiveness of microspore embryogenesis in triticale. Plant Science, 2019, 287, 110189.	1.7	20
20	Changes in protein abundance and activity involved in freezing tolerance acquisition in winter barley (Hordeum vulgare L.). Journal of Proteomics, 2017, 169, 58-72.	1.2	19
21	Microdochium nivale (Fr., Samuels & Hallett): cytological analysis of the infection process in triticale (×Triticosecale Wittm.). Acta Physiologiae Plantarum, 2011, 33, 529-537.	1.0	16
22	Reaction of winter oilseed rape callus to different concentrations of elicitors: pectinase or chitosan. Acta Physiologiae Plantarum, 2003, 25, 83-89.	1.0	15
23	Doubled Haploids in Triticale. , 2015, , 111-128.		15
24	Relationship between Frost Tolerance and Cold-Induced Resistance of Spring Barley, Meadow Fescue and Winter Oilseed Rape to Fungal Pathogens. Journal of Agronomy and Crop Science, 2003, 189, 333-340.	1.7	14
25	Involvement of homocastasterone, salicylic and abscisic acids in the regulation of drought and freezing tolerance in doubled haploid lines of winter barley. Plant Growth Regulation, 2020, 90, 173-188.	1.8	14
26	Cytological analysis of infection process and the first defence responses induced in winter rye (Secale cereale L.) seedlings inoculated with Microdochium nivale. Physiological and Molecular Plant Pathology, 2011, 76, 189-196.	1.3	13
27	Changes in protein abundance and activity induced by drought during generative development of winter barley (Hordeum vulgare L.). Journal of Proteomics, 2017, 169, 73-86.	1.2	12
28	Candidate Genes for Freezing and Drought Tolerance Selected on the Basis of Proteome Analysis in Doubled Haploid Lines of Barley. International Journal of Molecular Sciences, 2020, 21, 2062.	1.8	12
29	Identification of proteins related to microspore embryogenesis responsiveness in anther cultures of winter triticale (A—Triticosecale Wittm.). Euphytica, 2017, 213, 1.	0.6	11
30	β-1,3-Glucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye (Secale cereale L.). Plant Science, 2021, 302, 110700.	1.7	11
31	Triticale and barley microspore embryogenesis induction requires both reactive oxygen species generation and efficient system of antioxidative defence. Plant Cell, Tissue and Organ Culture, 2021, 145, 347-366.	1.2	11
32	Tocopherols mutual balance is a key player for maintaining Arabidopsis thaliana growth under salt stress. Plant Physiology and Biochemistry, 2020, 156, 369-383.	2.8	10
33	Impact of Ascorbate—Clutathione Cycle Components on the Effectiveness of Embryogenesis Induction in Isolated Microspore Cultures of Barley and Triticale. Antioxidants, 2021, 10, 1254.	2.2	10
34	The Effectiveness of Vernalization of Immature Embryos of Winter Wheat var. Grana as Related to Age and Exogenous Phytohormones. Journal of Agronomy and Crop Science, 1993, 170, 234-242.	1.7	9
35	Progress of snow mould infection in crowns of winter rye (Secale cereale L.) is related to photosynthetic activity during cold acclimation. Plant Physiology and Biochemistry, 2013, 70, 360-367.	2.8	9
36	Failure of androgenesis in MiscanthusÂ×Âgiganteus in vitro culture of cytologically unbalanced microspores. Plant Reproduction, 2013, 26, 297-307.	1.3	8

Iwona A Zur

#	Article	IF	CITATIONS
37	The effect of cold on the response of Brassica napus callus tissue to the secondary metabolites of Leptosphaeria maculans. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	8
38	Changes in the composition of fatty acids and sterols of membrane lipids during induction and differentiation of Brassica napus (var. oleifera L.) callus. Acta Physiologiae Plantarum, 2002, 24, 3-10.	1.0	7
39	Cell Structural Reorganization During Induction of Androgenesis in Isolated Microspore Cultures of Triticale (xTriticosecale Wittm.). Acta Biologica Cracoviensia Series Botanica, 2010, 52, .	0.5	6
40	Tissue Culture and Regeneration: A Prerequisite for Alien Gene Transfer. , 2014, , 43-75.		6
41	The Change of Heat Emission and Phenolic Compound Level in Hordeum vulgare (L.) and Festuca pratensis (Huds.) Calli Treated with Bipolaris sorokiniana (Sacc.) Shoem. Phytotoxins. Journal of Agronomy and Crop Science, 2000, 184, 17-21.	1.7	5
42	Beta-1,3-Glucanase Activities in Wheat and Relative Species. Nova Biotechnologica Et Chimica, 2016, 15, 122-132.	0.1	5
43	Albino Plant Formation in Androgenic Cultures: An Old Problem and New Facts. Methods in Molecular Biology, 2021, 2288, 3-23.	0.4	5
44	ROS-Scavengers, Osmoprotectants and Violaxanthin De-Epoxidation in Salt-Stressed Arabidopsis thaliana with Different Tocopherol Composition. International Journal of Molecular Sciences, 2021, 22, 11370.	1.8	5
45	Kinetics of 14C-labelled sucrose, myo-inositol and phosphatidylcholine uptake during induction and differentiation in Brassica napus callus culture. Acta Physiologiae Plantarum, 2002, 24, 11-17.	1.0	3
46	Sterility of Miscanthus × Giganteus Results from Hybrid Incompatibility. Acta Biologica Cracoviensia Series Botanica, 2012, 54, .	0.5	3
47	Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	3
48	Comparative proteomic analysis provides new insights into regulation of microspore embryogenesis induction in winter triticale (× Triticosecale Wittm.) after 5-azacytidine treatment. Scientific Reports, 2021, 11, 22215.	1.6	3
49	Microtubule organization changes severely after mannitol and n-butanol treatments inducing microspore embryogenesis in bread wheat. BMC Plant Biology, 2021, 21, 586.	1.6	3