Hilleke E Hulshoff Pol

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3371723/hilleke-e-hulshoff-pol-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

263 papers

26,531 citations

82 h-index

159 g-index

289 ext. papers

31,318 ext. citations

6.4 avg, IF

6.89 L-index

#	Paper	IF	Citations
263	Genetic variants associated with longitudinal changes in brain structure across the lifespan <i>Nature Neuroscience</i> , 2022 , 25, 421-432	25.5	1
262	Heritability of Urinary Amines, Organic Acids, and Steroid Hormones in Children. <i>Metabolites</i> , 2022 , 12, 474	5.6	0
261	Integrating Cognitive Developmental Neuroscience in Society: Lessons Learned From a Multidisciplinary Research Project on Education and Social Safety of Youth. <i>Frontiers in Integrative Neuroscience</i> , 2021 , 15, 756640	3.2	2
260	1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. <i>Translational Psychiatry</i> , 2021 , 11, 182	8.6	6
259	Accelerated aging in the brain, epigenetic aging in blood, and polygenic risk for schizophrenia. <i>Schizophrenia Research</i> , 2021 , 231, 189-197	3.6	5
258	De-identification procedures for magnetic resonance images and the impact on structural brain measures at different ages. <i>Human Brain Mapping</i> , 2021 , 42, 3643-3655	5.9	2
257	Reliability modelling of resting-state functional connectivity. <i>NeuroImage</i> , 2021 , 231, 117842	7.9	2
256	Sex Differences in Lifespan Trajectories and Variability of Human Sulcal and Gyral Morphology. <i>Cerebral Cortex</i> , 2021 , 31, 5107-5120	5.1	2
255	Reduced resting state functional connectivity in the hippocampus-midbrain-striatum network of schizophrenia patients. <i>Journal of Psychiatric Research</i> , 2021 , 138, 83-88	5.2	5
254	Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes: findings from the ENIGMA Epigenetics Working Group. <i>Molecular Psychiatry</i> , 2021 , 26, 3884-3	895 ^{.1}	22
253	Dissimilarity in Sulcal Width Patterns in the Cortex can be Used to Identify Patients With Schizophrenia With Extreme Deficits in Cognitive Performance. <i>Schizophrenia Bulletin</i> , 2021 , 47, 552-56	1 ^{1.3}	2
252	The Speed of Development of Adolescent Brain Age Depends on Sex and Is Genetically Determined. <i>Cerebral Cortex</i> , 2021 , 31, 1296-1306	5.1	7
251	Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years. <i>Human Brain Mapping</i> , 2021 ,	5.9	26
250	Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years. <i>Human Brain Mapping</i> , 2021 ,	5.9	13
249	Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs. <i>Human Brain Mapping</i> , 2021 ,	5.9	6
248	Alcohol use and brain morphology in adolescence: A longitudinal study in three different cohorts. <i>European Journal of Neuroscience</i> , 2021 , 54, 6012-6026	3.5	3
247	Heritability of Memory Functions and Related Brain Volumes: A Schizophrenia Spectrum Study of 214 Twins. <i>Schizophrenia Bulletin Open</i> , 2020 , 1,	2.2	2

(2019-2020)

246	ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. <i>Translational Psychiatry</i> , 2020 , 10, 100	8.6	154
245	The genetic architecture of the human cerebral cortex. <i>Science</i> , 2020 , 367,	33.3	156
244	Long-Term Stability of Cortisol Production and Metabolism Throughout Adolescence: Longitudinal Twin Study. <i>Twin Research and Human Genetics</i> , 2020 , 23, 33-38	2.2	1
243	Changes in the intracranial volume from early adulthood to the sixth decade of life: A longitudinal study. <i>NeuroImage</i> , 2020 , 220, 116842	7.9	6
242	Sexual dimorphism in cortisol metabolism throughout pubertal development: a longitudinal study. <i>Endocrine Connections</i> , 2020 , 9, 542-551	3.5	6
241	Structural Methods in Gray Matter 2020 , 3-26		
240	Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. <i>JAMA Psychiatry</i> , 2020 , 77, 420-430	14.5	24
239	Heritability of Cortisol Production and Metabolism Throughout Adolescence. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2020 , 105,	5.6	5
238	Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder. <i>Human Brain Mapping</i> , 2020 ,	5.9	5
237	The YOUth cohort study: MRI protocol and test-retest reliability in adults. <i>Developmental Cognitive Neuroscience</i> , 2020 , 45, 100816	5.5	9
236	Greater male than female variability in regional brain structure across the lifespan. <i>Human Brain Mapping</i> , 2020 ,	5.9	31
235	The YOUth study: Rationale, design, and study procedures. <i>Developmental Cognitive Neuroscience</i> , 2020 , 46, 100868	5.5	10
234	F91. REDUCED RESTING STATE FUNCTIONAL CONNECTIVITY IN THE HIPPOCAMPUS-MIDBRAIN-STRIATUM NETWORK OF SCHIZOPHRENIA PATIENTS. <i>Schizophrenia Bulletin</i> , 2019 , 45, S288-S288	1.3	78
233	S15. HERITABILITY AND CORRELATION TO SCHIZOPHRENIA SPECTRUM DISORDERS OF CEREBRAL BLOOD FLOW MEASURED BY PSEUDO-CONTINUOUS ARTERIAL SPIN LABELING IN DANISH TWINS. <i>Schizophrenia Bulletin</i> , 2019 , 45, S311-S311	1.3	78
232	The Association Between Familial Risk and Brain Abnormalities Is Disease Specific: An ENIGMA-Relatives Study of Schizophrenia and Bipolar Disorder. <i>Biological Psychiatry</i> , 2019 , 86, 545-556	7.9	33
231	Homogenizing Estimates of Heritability Among SOLAR-Eclipse, OpenMx, APACE, and FPHI Software Packages in Neuroimaging Data. <i>Frontiers in Neuroinformatics</i> , 2019 , 13, 16	3.9	15
230	Genetic and environmental influences on functional connectivity within and between canonical cortical resting-state networks throughout adolescent development in boys and girls. <i>NeuroImage</i> , 2019 , 202, 116073	7.9	23
229	Heritability of Cerebral Blood Flow and the Correlation to Schizophrenia Spectrum Disorders: A Pseudo-continuous Arterial Spin Labeling Twin Study. <i>Schizophrenia Bulletin</i> , 2019 , 45, 1231-1241	1.3	5

Genetic architecture of subcortical brain structures in 38,851 individuals. *Nature Genetics*, 2019, 51, 1624;6636 81

227	Running in the Family? Structural Brain Abnormalities and IQ in Offspring, Siblings, Parents, and Co-twins of Patients with Schizophrenia. <i>Schizophrenia Bulletin</i> , 2019 , 45, 1209-1217	1.3	8
226	Heritability of cerebral glutamate levels and their association with schizophrenia spectrum disorders: a [H]-spectroscopy twin study. <i>Neuropsychopharmacology</i> , 2019 , 44, 581-589	8.7	21
225	Genetic Influences on the Development of Cerebral Cortical Thickness During Childhood and Adolescence in a Dutch Longitudinal Twin Sample: The Brainscale Study. <i>Cerebral Cortex</i> , 2019 , 29, 978-	9 9 3	24
224	Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. <i>Molecular Psychiatry</i> , 2018 , 23, 1261-1269	15.1	324
223	Detailed T1-Weighted Profiles from the Human Cortex Measured in Vivo at 3 Tesla MRI. <i>Neuroinformatics</i> , 2018 , 16, 181-196	3.2	6
222	Genetic vulnerability to DUSP22 promoter hypermethylation is involved in the relation between in utero famine exposure and schizophrenia. <i>NPJ Schizophrenia</i> , 2018 , 4, 16	5.5	20
221	Association between structural brain network efficiency and intelligence increases during adolescence. <i>Human Brain Mapping</i> , 2018 , 39, 822-836	5.9	31
220	O4.1. GENETIC VULNERABILITY TO DUSP22 PROMOTOR HYPERMETHYLATION IS INVOLVED IN THE RELATION BETWEEN IN UTERO FAMINE EXPOSURE AND SCHIZOPHRENIA. <i>Schizophrenia Bulletin</i> , 2018 , 44, S82-S82	1.3	78
219	O4.2. HERITABILITY AND CORRELATION TO SCHIZOPHRENIA SPECTRUM DISORDER OF GLUTAMATE AND OTHER NEUROMETABOLITE LEVELS IN ANTERIOR CINGULATE AND LEFT THALAMUS: A REGISTER BASED MAGNETIC RESONANCE TWIN STUDY. <i>Schizophrenia Bulletin</i> , 2018 ,	1.3	78
218	Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. <i>Biological Psychiatry</i> , 2018 , 84, 644-654	7.9	325
217	ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. <i>NeuroImage</i> , 2017 , 145, 389-408	7.9	142
216	Genetic transmission of reading ability. Brain and Language, 2017, 172, 3-8	2.9	27
215	Novel genetic loci associated with hippocampal volume. <i>Nature Communications</i> , 2017 , 8, 13624	17.4	173
214	Associations between subjective well-being and subcortical brain volumes. <i>Scientific Reports</i> , 2017 , 7, 6957	4.9	10
213	Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. <i>Brain Imaging and Behavior</i> , 2017 , 11, 1497-1514	4.1	87
212	Detection of Glutamate Alterations in the Human Brain Using H-MRS: Comparison of STEAM and sLASER at 7 T. <i>Frontiers in Psychiatry</i> , 2017 , 8, 60	5	7
211	GABAergic Mechanisms in Schizophrenia: Linking Postmortem and Studies. <i>Frontiers in Psychiatry</i> , 2017 , 8, 118	5	74

(2016-2017)

210	Intelligence and Brain Efficiency: Investigating the Association between Working Memory Performance, Glutamate, and GABA. <i>Frontiers in Psychiatry</i> , 2017 , 8, 154	5	10
209	Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group. <i>Human Brain Mapping</i> , 2017 , 38, 4444-4458	5.9	37
208	The impact of chronic fatigue syndrome on cognitive functioning in adolescents. <i>European Journal of Pediatrics</i> , 2016 , 175, 245-52	4.1	16
207	Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. <i>Molecular Psychiatry</i> , 2016 , 21, 547-53	15.1	525
206	An integrated genetic-epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential DNA methylation. <i>Genome Biology</i> , 2016 , 17, 176	18.3	189
205	A study of genetic and environmental contributions to structural brain changes over time in twins concordant and discordant for bipolar disorder. <i>Journal of Psychiatric Research</i> , 2016 , 79, 116-124	5.2	6
204	Trajectories of subcortical volume change in schizophrenia: A 5-year follow-up. <i>Schizophrenia Research</i> , 2016 , 173, 140-145	3.6	19
203	Connectome organization is related to longitudinal changes in general functioning, symptoms and IQ in chronic schizophrenia. <i>Schizophrenia Research</i> , 2016 , 173, 166-173	3.6	28
202	Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. <i>Nature Neuroscience</i> , 2016 , 19, 420-431	25.5	163
201	Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recognition Study. <i>American Journal of Psychiatry</i> , 2016 , 173, 607-16	11.9	197
200	Structural Brain Connectivity as a Genetic Marker for Schizophrenia. <i>JAMA Psychiatry</i> , 2016 , 73, 11-9	14.5	39
199	Topology of genetic associations between regional gray matter volume and intellectual ability: Evidence for a high capacity network. <i>Neurolmage</i> , 2016 , 124, 1044-1053	7.9	10
198	The association between hippocampal volume and life events in healthy twins. <i>Hippocampus</i> , 2016 , 26, 1088-95	3.5	4
197	The Computerized Neurocognitive Battery: Validation, aging effects, and heritability across cognitive domains. <i>Neuropsychology</i> , 2016 , 30, 53-64	3.8	31
196	No Evidence of Causal Effects of Blood Pressure on Cognition in the Population at Large. <i>Twin Research and Human Genetics</i> , 2016 , 19, 17-26	2.2	
195	Heritability of cortical thickness changes over time in twin pairs discordant for schizophrenia. <i>Schizophrenia Research</i> , 2016 , 173, 192-199	3.6	21
194	Genetic Variation in Schizophrenia Liability is Shared With Intellectual Ability and Brain Structure. <i>Schizophrenia Bulletin</i> , 2016 , 42, 1167-75	1.3	17
193	Novel genetic loci underlying human intracranial volume identified through genome-wide association. <i>Nature Neuroscience</i> , 2016 , 19, 1569-1582	25.5	147

192	Common genetic variants influence human subcortical brain structures. <i>Nature</i> , 2015 , 520, 224-9	50.4	601
191	Longitudinal development of hormone levels and grey matter density in 9 and 12-year-old twins. <i>Behavior Genetics</i> , 2015 , 45, 313-23	3.2	21
190	Intelligence: shared genetic basis between Mendelian disorders and a polygenic trait. <i>European Journal of Human Genetics</i> , 2015 , 23, 1378-83	5.3	10
189	Genetic and environmental influences on cortical surface area and cortical thickness in bipolar disorder. <i>Psychological Medicine</i> , 2015 , 45, 193-204	6.9	12
188	Association of IQ Changes and Progressive Brain Changes in Patients With Schizophrenia. <i>JAMA Psychiatry</i> , 2015 , 72, 803-12	14.5	61
187	Domain dependent associations between cognitive functioning and regular voluntary exercise behavior. <i>Brain and Cognition</i> , 2015 , 97, 32-9	2.7	7
186	Heritability of fractional anisotropy in human white matter: a comparison of Human Connectome Project and ENIGMA-DTI data. <i>NeuroImage</i> , 2015 , 111, 300-11	7.9	159
185	Reciprocal causation models of cognitive vs volumetric cerebral intermediate phenotypes for schizophrenia in a pan-European twin cohort. <i>Molecular Psychiatry</i> , 2015 , 20, 1386-96	15.1	26
184	Contribution of genes and unique environment to cross-sectional and longitudinal measures of subcortical volumes in bipolar disorder. <i>European Neuropsychopharmacology</i> , 2015 , 25, 2197-209	1.2	11
183	Development of the brain's structural network efficiency in early adolescence: A longitudinal DTI twin study. <i>Human Brain Mapping</i> , 2015 , 36, 4938-53	5.9	42
182	Structural MRI Differences between Patients with and without First Rank Symptoms: A Delusion?. <i>Frontiers in Psychiatry</i> , 2015 , 6, 107	5	
181	Changes in thickness and surface area of the human cortex and their relationship with intelligence. <i>Cerebral Cortex</i> , 2015 , 25, 1608-17	5.1	206
180	Physical Exercise Keeps the Brain Connected: Biking Increases White Matter Integrity in Patients With Schizophrenia and Healthy Controls. <i>Schizophrenia Bulletin</i> , 2015 , 41, 869-78	1.3	74
179	Comparing free water imaging and magnetization transfer measurements in schizophrenia. <i>Schizophrenia Research</i> , 2015 , 161, 126-32	3.6	24
178	Genetic basis of a cognitive complexity metric. <i>PLoS ONE</i> , 2015 , 10, e0123886	3.7	14
177	Genes contributing to subcortical volumes and intellectual ability implicate the thalamus. <i>Human Brain Mapping</i> , 2014 , 35, 2632-42	5.9	21
176	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. <i>Brain Imaging and Behavior</i> , 2014 , 8, 153-82	4.1	539
175	Genome-wide association study of sexual maturation in males and females highlights a role for body mass and menarche loci in male puberty. <i>Human Molecular Genetics</i> , 2014 , 23, 4452-64	5.6	66

(2013-2014)

174	Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. <i>Nature</i> , 2014 , 514, 92-97	50.4	401
173	Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: Comparing meta and megaanalytical approaches for data pooling. <i>NeuroImage</i> , 2014 , 95, 136-50	7.9	95
172	Do we measure gray matter activation with functional diffusion tensor imaging?. <i>Frontiers in Neuroscience</i> , 2014 , 8, 126	5.1	
171	GABA and glutamate in schizophrenia: a 7 T [H-MRS study. NeuroImage: Clinical, 2014, 6, 398-407	5.3	102
170	Heritability of structural brain network topology: a DTI study of 156 twins. <i>Human Brain Mapping</i> , 2014 , 35, 5295-305	5.9	50
169	Genetic associations between intelligence and cortical thickness emerge at the start of puberty. <i>Human Brain Mapping</i> , 2014 , 35, 3760-73	5.9	21
168	Association study of fibroblast growth factor genes and brain volumes in schizophrenic patients and healthy controls. <i>Psychiatric Genetics</i> , 2014 , 24, 283-4	2.9	
167	Genetic and environmental stability of intelligence in childhood and adolescence. <i>Twin Research and Human Genetics</i> , 2014 , 17, 151-63	2.2	13
166	Development and heritability of subcortical brain volumes at ages 9 and 12. <i>Genes, Brain and Behavior</i> , 2014 , 13, 733-42	3.6	27
165	Heritability of brain volume change and its relation to intelligence. <i>NeuroImage</i> , 2014 , 100, 676-83	7.9	25
164	Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. <i>NeuroImage</i> , 2014 , 84, 299-306	7.9	151
163	Altered white matter connectivity in never-medicated patients with schizophrenia. <i>Human Brain Mapping</i> , 2013 , 34, 2353-65	5.9	53
162	Family-wise automatic classification in schizophrenia. Schizophrenia Research, 2013, 149, 108-11	3.6	5
161	A family affair: brain abnormalities in siblings of patients with schizophrenia. <i>Brain</i> , 2013 , 136, 3215-26	11.2	47
160	Assessment of system dysfunction in the brain through MRI-based connectomics. <i>Lancet Neurology, The</i> , 2013 , 12, 1189-99	24.1	155
159	Disturbed grey matter coupling in schizophrenia. European Neuropsychopharmacology, 2013 , 23, 46-54	1.2	25
158	Genetic control of functional brain network efficiency in children. <i>European Neuropsychopharmacology</i> , 2013 , 23, 19-23	1.2	95
157	Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. <i>NeuroImage</i> , 2013 , 81, 455-469	7.9	278

156	Heritability of subcortical brain measures: a perspective for future genome-wide association studies. <i>NeuroImage</i> , 2013 , 83, 98-102	7.9	67
155	Confounders of excessive brain volume loss in schizophrenia. <i>Neuroscience and Biobehavioral Reviews</i> , 2013 , 37, 2418-23	9	55
154	Glutamate changes in healthy young adulthood. European Neuropsychopharmacology, 2013, 23, 1484-9	01.2	27
153	Tract-based diffusion tensor imaging in patients with schizophrenia and their non-psychotic siblings. <i>European Neuropsychopharmacology</i> , 2013 , 23, 295-304	1.2	51
152	Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls. <i>European Neuropsychopharmacology</i> , 2013 , 23, 675-85	1.2	91
151	Genetic schizophrenia risk variants jointly modulate total brain and white matter volume. <i>Biological Psychiatry</i> , 2013 , 73, 525-31	7.9	87
150	Neural networks in psychiatry. European Neuropsychopharmacology, 2013 , 23, 1-6	1.2	29
149	IQ change over time in schizophrenia and healthy individuals: a meta-analysis. <i>Schizophrenia Research</i> , 2013 , 146, 201-8	3.6	47
148	Abnormal rich club organization and functional brain dynamics in schizophrenia. <i>JAMA Psychiatry</i> , 2013 , 70, 783-92	14.5	463
147	Longitudinal study of hormonal and physical development in young twins. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2013 , 98, E518-27	5.6	25
146	Glutamate in schizophrenia: a focused review and meta-analysis of []H-MRS studies. <i>Schizophrenia Bulletin</i> , 2013 , 39, 120-9	1.3	327
145	How frequent are radiological abnormalities in patients with psychosis? A review of 1379 MRI scans. <i>Schizophrenia Bulletin</i> , 2013 , 39, 815-9	1.3	26
144	Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. <i>Schizophrenia Bulletin</i> , 2013 , 39, 1129-38	1.3	586
143	Functional diffusion tensor imaging at 3 Tesla. Frontiers in Human Neuroscience, 2013, 7, 817	3.3	17
142	Aberrations in the arcuate fasciculus are associated with auditory verbal hallucinations in psychotic and in non-psychotic individuals. <i>Human Brain Mapping</i> , 2013 , 34, 626-34	5.9	59
141	Heritability of volumetric brain changes and height in children entering puberty. <i>Human Brain Mapping</i> , 2013 , 34, 713-25	5.9	25
140	Relationship between carbohydrate-deficient transferrin, gamma-glutamyl transferase, and mean corpuscular volume levels and alcohol-related brain volume decreases in male drinkers. <i>Human Psychopharmacology</i> , 2012 , 27, 559-65	2.3	2
139	Association study of copy number variants with brain volume in schizophrenia patients and healthy controls. <i>Psychiatry Research</i> , 2012 , 200, 1011-3	9.9	6

(2012-2012)

138	Identification of common variants associated with human hippocampal and intracranial volumes. <i>Nature Genetics</i> , 2012 , 44, 552-61	36.3	498
137	Poster #56 CLASSIFICATION OF SCHIZOPHRENIA PATIENTS AND HEALTHY CONTROLS FROM STRUCTURAL MRI SCANS VERIFIED IN TWO LARGE INDEPENDENT SAMPLES. <i>Schizophrenia Research</i> , 2012 , 136, S205	3.6	1
136	The genetic and environmental determinants of the association between brain abnormalities and schizophrenia: the schizophrenia twins and relatives consortium. <i>Biological Psychiatry</i> , 2012 , 71, 915-21	7.9	45
135	Genetic influences on thinning of the cerebral cortex during development. <i>NeuroImage</i> , 2012 , 59, 3871-	-8,0 9	72
134	Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. <i>NeuroImage</i> , 2012 , 61, 606-12	7.9	134
133	Symptom dimensions are associated with progressive brain volume changes in schizophrenia. <i>Schizophrenia Research</i> , 2012 , 138, 171-6	3.6	29
132	A meta-analysis of the polyunsaturated fatty acid composition of erythrocyte membranes in schizophrenia. <i>Schizophrenia Research</i> , 2012 , 141, 153-61	3.6	82
131	White matter development in early puberty: a longitudinal volumetric and diffusion tensor imaging twin study. <i>PLoS ONE</i> , 2012 , 7, e32316	3.7	83
130	Tract-based magnetic resonance spectroscopy of the cingulum bundles at 7 T. <i>Human Brain Mapping</i> , 2012 , 33, 1503-11	5.9	10
129	Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. <i>Human Brain Mapping</i> , 2012 , 33, 1987-2002	5.9	254
128	Decreased frontostriatal microstructural organization in attention deficit/hyperactivity disorder. <i>Human Brain Mapping</i> , 2012 , 33, 1941-51	5.9	58
127	The course of brain abnormalities in schizophrenia: can we slow the progression?. <i>Journal of Psychopharmacology</i> , 2012 , 26, 8-14	4.6	25
126	Focal and global brain measurements in siblings of patients with schizophrenia. <i>Schizophrenia Bulletin</i> , 2012 , 38, 814-25	1.3	42
125	Hypothalamus and pituitary volume in schizophrenia: a structural MRI study. <i>International Journal of Neuropsychopharmacology</i> , 2012 , 15, 281-8	5.8	37
124	Brain SCALE: brain structure and cognition: an adolescent longitudinal twin study into the genetic etiology of individual differences. <i>Twin Research and Human Genetics</i> , 2012 , 15, 453-67	2.2	42
123	Overlapping and segregating structural brain abnormalities in twins with schizophrenia or bipolar disorder. <i>Archives of General Psychiatry</i> , 2012 , 69, 349-59		82
122	Common variants at 12q14 and 12q24 are associated with hippocampal volume. <i>Nature Genetics</i> , 2012 , 44, 545-51	36.3	175
121	Individual differences in EEG spectral power reflect genetic variance in gray and white matter volumes. <i>Twin Research and Human Genetics</i> , 2012 , 15, 384-92	2.2	60

120	Is there change in intelligence quotient in chronically ill schizophrenia patients? A longitudinal study in twins discordant for schizophrenia. <i>Psychological Medicine</i> , 2012 , 42, 2535-41	6.9	7
119	Brain volume reductions in medication-naive patients with schizophrenia in relation to intelligence quotient. <i>Psychological Medicine</i> , 2012 , 42, 1847-56	6.9	27
118	The brain matures with stronger functional connectivity and decreased randomness of its network. <i>PLoS ONE</i> , 2012 , 7, e36896	3.7	80
117	Microstructural alterations of the arcuate fasciculus in schizophrenia patients with frequent auditory verbal hallucinations. <i>Schizophrenia Research</i> , 2011 , 130, 68-77	3.6	73
116	Duration of untreated illness in schizophrenia is not associated with 5-year brain volume change. <i>Schizophrenia Research</i> , 2011 , 132, 84-90	3.6	25
115	Sex steroids and brain structure in pubertal boys and girls: a mini-review of neuroimaging studies. <i>Neuroscience</i> , 2011 , 191, 28-37	3.9	138
114	Impaired cerebellar functional connectivity in schizophrenia patients and their healthy siblings. <i>Frontiers in Psychiatry</i> , 2011 , 2, 73	5	74
113	Brain volume changes after withdrawal of atypical antipsychotics in patients with first-episode schizophrenia. <i>Journal of Clinical Psychopharmacology</i> , 2011 , 31, 146-53	1.7	47
112	Sex steroids and connectivity in the human brain: a review of neuroimaging studies. <i>Psychoneuroendocrinology</i> , 2011 , 36, 1101-13	5	137
111	Heritability of verbal and performance intelligence in a pediatric longitudinal sample. <i>Twin Research and Human Genetics</i> , 2011 , 14, 119-28	2.2	68
110	Exploracifi de la red cerebral: una revisifi de la conectividad funcional en la RMf en estado de reposo. <i>Psiquiatria Biologica</i> , 2011 , 18, 28-41	0.2	9
109	Changes in cortical thickness during the course of illness in schizophrenia. <i>Archives of General Psychiatry</i> , 2011 , 68, 871-80		267
108	Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. <i>PLoS ONE</i> , 2010 , 5, e13664	3.7	132
107	Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. <i>Journal of Neuroscience</i> , 2010 , 30, 15915-26	6.6	504
106	Brain plasticity and intellectual ability are influenced by shared genes. <i>Journal of Neuroscience</i> , 2010 , 30, 5519-24	6.6	77
105	Tract-based analysis of magnetization transfer ratio and diffusion tensor imaging of the frontal and frontotemporal connections in schizophrenia. <i>Schizophrenia Bulletin</i> , 2010 , 36, 778-87	1.3	74
104	Genetic and environmental influences on focal brain density in bipolar disorder. <i>Brain</i> , 2010 , 133, 3080-	9 2 1.2	41
103	Heritability of DTI and MTR in nine-year-old children. <i>NeuroImage</i> , 2010 , 53, 1085-92	7.9	62

(2009-2010)

102	Exploring the brain network: a review on resting-state fMRI functional connectivity. <i>European Neuropsychopharmacology</i> , 2010 , 20, 519-34	1.2	1915
101	Cigarette smoking and progressive brain volume loss in schizophrenia. <i>European Neuropsychopharmacology</i> , 2010 , 20, 454-8	1.2	17
100	Cortical thickness and voxel-based morphometry in depressed elderly. <i>European Neuropsychopharmacology</i> , 2010 , 20, 398-404	1.2	47
99	Cannabis use and progressive cortical thickness loss in areas rich in CB1 receptors during the first five years of schizophrenia. <i>European Neuropsychopharmacology</i> , 2010 , 20, 855-65	1.2	66
98	Segmentation of MRI brain scans using non-uniform partial volume densities. <i>NeuroImage</i> , 2010 , 49, 467	7 <i>=</i> 7.3j	41
97	Specific somatotopic organization of functional connections of the primary motor network during resting state. <i>Human Brain Mapping</i> , 2010 , 31, 631-44	5.9	57
96	Effects of gestational age and birth weight on brain volumes in healthy 9 year-old children. <i>Journal of Pediatrics</i> , 2010 , 156, 896-901	3.6	28
95	HPG-axis hormones during puberty: a study on the association with hypothalamic and pituitary volumes. <i>Psychoneuroendocrinology</i> , 2010 , 35, 133-40	5	41
94	Mapping reliability in multicenter MRI: voxel-based morphometry and cortical thickness. <i>Human Brain Mapping</i> , 2010 , 31, 1967-82	5.9	61
93	Effects of brain-derived neurotrophic factor Val66Met polymorphism on hippocampal volume change in schizophrenia. <i>Hippocampus</i> , 2010 , 20, 1010-7	3.5	43
92	Hippocampal volume change in schizophrenia. <i>Journal of Clinical Psychiatry</i> , 2010 , 71, 737-44	4.6	43
91	Influence of genes and environment on brain volumes in twin pairs concordant and discordant for bipolar disorder. <i>Archives of General Psychiatry</i> , 2009 , 66, 142-51		89
90	Does having a twin brother make for a bigger brain?. European Journal of Endocrinology, 2009, 160, 739-	- 46 5	35
89	Sex steroids and brain structure in pubertal boys and girls. <i>Psychoneuroendocrinology</i> , 2009 , 34, 332-42	5	199
88	No differences in MR-based volumetry between 2- and 7-year-old children with autism spectrum disorder and developmental delay. <i>Brain and Development</i> , 2009 , 31, 725-30	2.2	24
87	Heritability of regional and global brain structure at the onset of puberty: a magnetic resonance imaging study in 9-year-old twin pairs. <i>Human Brain Mapping</i> , 2009 , 30, 2184-96	5.9	135
86	Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. <i>Human Brain Mapping</i> , 2009 , 30, 3127-41	5.9	759
85	Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. <i>Human Brain Mapping</i> , 2009 , 30, 3719-35	5.9	649

84	Genetic covariance structure of reading, intelligence and memory in children. <i>Behavior Genetics</i> , 2009 , 39, 245-54	3.2	15
83	A genetic analysis of brain volumes and IQ in children. <i>Intelligence</i> , 2009 , 37, 181-191	3	32
82	Individual differences in dynamic measures of verbal learning abilities in young twin pairs and their older siblings. <i>Learning and Individual Differences</i> , 2009 , 19, 440-444	3.1	3
81	Workshop on defining the significance of progressive brain change in schizophrenia: December 12, 2008 American College of Neuropsychopharmacology (ACNP) all-day satellite, Scottsdale, Arizona. The rapporteurs' report. <i>Schizophrenia Research</i> , 2009 , 112, 32-45	3.6	31
80	Efficiency of functional brain networks and intellectual performance. <i>Journal of Neuroscience</i> , 2009 , 29, 7619-24	6.6	821
79	Psychosis and brain volume changes during the first five years of schizophrenia. <i>European Neuropsychopharmacology</i> , 2009 , 19, 147-51	1.2	79
78	Advances in high-resolution imaging and computational unfolding of the human hippocampus. <i>NeuroImage</i> , 2009 , 47, 42-9	7.9	82
77	Human Brain Volume: What⊠in the Genes# 2009 , 137-157		2
76	Cerebral white matter in early puberty is associated with luteinizing hormone concentrations. <i>Psychoneuroendocrinology</i> , 2008 , 33, 909-15	5	82
75	CHANGES IN CORTICAL THICKNESS IN PATIENTS WITH SCHIZOPHRENIA: A 5-YEAR LONGITUDINALMRI STUDY ACROSS THE COURSE OF ILLNESS. <i>Schizophrenia Research</i> , 2008 , 102, 15-10	5 ^{3.6}	
74	THE RELATIONSHIP BETWEEN BRAIN VOLUMES AND MEMORY PERFORMANCE IN SCHIZOPHRENIA. <i>Schizophrenia Research</i> , 2008 , 102, 138	3.6	
73	Progressive brain volume loss in schizophrenia over the course of the illness: evidence of maturational abnormalities in early adulthood. <i>Biological Psychiatry</i> , 2008 , 63, 106-13	7.9	201
72	Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. <i>NeuroImage</i> , 2008 , 43, 528-39	7.9	547
71	Hypothalamus volume in twin pairs discordant for schizophrenia. <i>European Neuropsychopharmacology</i> , 2008 , 18, 312-5	1.2	36
70	Schizophrenia as a progressive brain disease. European Psychiatry, 2008, 23, 245-54	6	66
69	Microstructural organization of the cingulum tract and the level of default mode functional connectivity. <i>Journal of Neuroscience</i> , 2008 , 28, 10844-51	6.6	258
68	Excessive brain volume loss over time in cannabis-using first-episode schizophrenia patients. <i>American Journal of Psychiatry</i> , 2008 , 165, 490-6	11.9	163
67	Longitudinal MRI study in schizophrenia patients and their healthy siblings. <i>British Journal of Psychiatry</i> , 2008 , 193, 422-3	5.4	34

(2005-2008)

66	Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia. Archives of General Psychiatry, 2008 , 65, 1259-68		107
65	What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. <i>Schizophrenia Bulletin</i> , 2008 , 34, 354-66	1.3	271
64	Normalized cut group clustering of resting-state FMRI data. <i>PLoS ONE</i> , 2008 , 3, e2001	3.7	295
63	Functional diffusion tensor imaging: measuring task-related fractional anisotropy changes in the human brain along white matter tracts. <i>PLoS ONE</i> , 2008 , 3, e3631	3.7	52
62	Cerebral volume measurements and subcortical white matter lesions and short-term treatment response in late life depression. <i>International Journal of Geriatric Psychiatry</i> , 2007 , 22, 468-74	3.9	47
61	Genetic influences on human brain structure: a review of brain imaging studies in twins. <i>Human Brain Mapping</i> , 2007 , 28, 464-73	5.9	337
60	Hippocampal volume and subcortical white matter lesions in late life depression: comparison of early and late onset depression. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2007 , 78, 638-40	5.5	79
59	Focal gray matter changes in schizophrenia across the course of the illness: a 5-year follow-up study. <i>Neuropsychopharmacology</i> , 2007 , 32, 2057-66	8.7	237
58	Brain volumes in relatives of patients with schizophrenia: a meta-analysis. <i>Archives of General Psychiatry</i> , 2007 , 64, 297-304		234
57	MRI, volumetry, 1H spectroscopy, and cerebropetal blood flowmetry in childhood idiopathic anatomic megalencephaly. <i>Journal of Magnetic Resonance Imaging</i> , 2006 , 24, 282-7	5.6	4
57 56		5.6 6.6	217
	anatomic megalencephaly. <i>Journal of Magnetic Resonance Imaging</i> , 2006 , 24, 282-7 Genetic contributions to human brain morphology and intelligence. <i>Journal of Neuroscience</i> , 2006 ,		<u> </u>
56	anatomic megalencephaly. <i>Journal of Magnetic Resonance Imaging</i> , 2006 , 24, 282-7 Genetic contributions to human brain morphology and intelligence. <i>Journal of Neuroscience</i> , 2006 , 26, 10235-42 Changing your sex changes your brain: influences of testosterone and estrogen on adult human	6.6	217
56 55	anatomic megalencephaly. <i>Journal of Magnetic Resonance Imaging</i> , 2006 , 24, 282-7 Genetic contributions to human brain morphology and intelligence. <i>Journal of Neuroscience</i> , 2006 , 26, 10235-42 Changing your sex changes your brain: influences of testosterone and estrogen on adult human brain structure. <i>European Journal of Endocrinology</i> , 2006 , 155, S107-S114 Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for	6.6	217
565554	anatomic megalencephaly. <i>Journal of Magnetic Resonance Imaging</i> , 2006 , 24, 282-7 Genetic contributions to human brain morphology and intelligence. <i>Journal of Neuroscience</i> , 2006 , 26, 10235-42 Changing your sex changes your brain: influences of testosterone and estrogen on adult human brain structure. <i>European Journal of Endocrinology</i> , 2006 , 155, S107-S114 Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry. <i>NeuroImage</i> , 2006 , 31, 482-8 Brain volume changes in the first year of illness and 5-year outcome of schizophrenia. <i>British</i>	6.6 6.5 7.9	2179593
56555453	anatomic megalencephaly. Journal of Magnetic Resonance Imaging, 2006, 24, 282-7 Genetic contributions to human brain morphology and intelligence. Journal of Neuroscience, 2006, 26, 10235-42 Changing your sex changes your brain: influences of testosterone and estrogen on adult human brain structure. European Journal of Endocrinology, 2006, 155, S107-S114 Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry. NeuroImage, 2006, 31, 482-8 Brain volume changes in the first year of illness and 5-year outcome of schizophrenia. British Journal of Psychiatry, 2006, 189, 381-2 Anatomische veranderingen in de hersenen van patiliten met schizofrenie: wat kan	6.6 6.5 7.9	2179593
5655545352	anatomic megalencephaly. Journal of Magnetic Resonance Imaging, 2006, 24, 282-7 Genetic contributions to human brain morphology and intelligence. Journal of Neuroscience, 2006, 26, 10235-42 Changing your sex changes your brain: influences of testosterone and estrogen on adult human brain structure. European Journal of Endocrinology, 2006, 155, S107-S114 Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry. NeuroImage, 2006, 31, 482-8 Brain volume changes in the first year of illness and 5-year outcome of schizophrenia. British Journal of Psychiatry, 2006, 189, 381-2 Anatomische veranderingen in de hersenen van patiliten met schizofrenie: wat kan diffusie-tensor-imaging ons leren?. Neuropraxis, 2006, 10, 40-43 Focal brain matter differences associated with lifetime alcohol intake and visual attention in male	6.6 6.5 7.9 5.4	217 95 93 112

48	Brain MRI abnormalities in schizophrenia: same genes or same environment?. <i>Psychological Medicine</i> , 2005 , 35, 1399-409	6.9	82
47	Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. <i>Molecular Psychiatry</i> , 2005 , 10, 678-85	15.1	184
46	Associations between alcohol intake and brain volumes in male and female moderate drinkers. <i>Alcoholism: Clinical and Experimental Research</i> , 2005 , 29, 656-63	3.7	27
45	Larger brains in medication naive high-functioning subjects with pervasive developmental disorder. Journal of Autism and Developmental Disorders, 2004, 34, 603-13	4.6	29
44	Reliability of brain volumes from multicenter MRI acquisition: a calibration study. <i>Human Brain Mapping</i> , 2004 , 22, 312-20	5.9	72
43	Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 2004 , 43, 332-4	107.2	268
42	Cannabis and brain morphology in recent-onset schizophrenia. Schizophrenia Research, 2004, 67, 305-7	3.6	48
41	A controlled study of brain structure in monozygotic twins concordant and discordant for schizophrenia. <i>Biological Psychiatry</i> , 2004 , 56, 454-61	7.9	70
40	Hippocampal changes and white matter lesions in early-onset depression. <i>Biological Psychiatry</i> , 2004 , 56, 825-31	7.9	75
39	Focal white matter density changes in schizophrenia: reduced inter-hemispheric connectivity. <i>NeuroImage</i> , 2004 , 21, 27-35	7.9	156
38	Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia. <i>Biological Psychiatry</i> , 2004 , 55, 126-30	7.9	104
37	Global intellectual impairment does not accelerate with age in patients with schizophrenia: a cross-sectional analysis. <i>Schizophrenia Bulletin</i> , 2003 , 29, 509-17	1.3	21
36	Association of depression duration with reduction of global cerebral gray matter volume in female patients with recurrent major depressive disorder. <i>American Journal of Psychiatry</i> , 2003 , 160, 2052-4	11.9	30
35	Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed. <i>Twin Research and Human Genetics</i> , 2003 , 6, 131-9		92
34	Brain volumes as predictor of outcome in recent-onset schizophrenia: a multi-center MRI study. <i>Schizophrenia Research</i> , 2003 , 64, 41-52	3.6	76
33	Odor discrimination in patients with frontal lobe damage and Korsakoff's syndrome. <i>Neuropsychologia</i> , 2002 , 40, 888-91	3.2	17
32	The association between brain volume and intelligence is of genetic origin. <i>Nature Neuroscience</i> , 2002 , 5, 83-4	25.5	306
31	Brain volume changes in first-episode schizophrenia: a 1-year follow-up study. <i>Archives of General Psychiatry</i> , 2002 , 59, 1002-10		327

30	Twin-singleton differences in brain structure using structural equation modelling. <i>Brain</i> , 2002 , 125, 384	-90.2	34
29	Volume changes in gray matter in patients with schizophrenia. <i>American Journal of Psychiatry</i> , 2002 , 159, 244-50	11.9	172
28	Volumes of brain structures in twins discordant for schizophrenia. <i>Archives of General Psychiatry</i> , 2001 , 58, 33-40		161
27	The effect of clozapine on caudate nucleus volume in schizophrenic patients previously treated with typical antipsychotics. <i>Neuropsychopharmacology</i> , 2001 , 24, 47-54	8.7	90
26	Effect of clozapine on caudate nucleus volume in relation to symptoms of schizophrenia. <i>American Journal of Psychiatry</i> , 2001 , 158, 644-6	11.9	58
25	Focal gray matter density changes in schizophrenia. Archives of General Psychiatry, 2001 , 58, 1118-25		231
24	Quantitative genetic modeling of variation in human brain morphology. Cerebral Cortex, 2001, 11, 816-	24 .1	234
23	Structural brain abnormalities in chronic schizophrenia at the extremes of the outcome spectrum. <i>American Journal of Psychiatry</i> , 2001 , 158, 1140-2	11.9	74
22	Differentiating between low and high susceptibility to schizophrenia in twins: the significance of dermatoglyphic indices in relation to other determinants of brain development. <i>Schizophrenia Research</i> , 2001 , 52, 181-93	3.6	34
21	Automated separation of gray and white matter from MR images of the human brain. <i>NeuroImage</i> , 2001 , 13, 230-7	7.9	82
20	Automatic segmentation of the ventricular system from MR images of the human brain. <i>NeuroImage</i> , 2001 , 14, 95-104	7.9	94
19	A four-dimensional probabilistic atlas of the human brain. <i>Journal of the American Medical Informatics Association: JAMIA</i> , 2001 , 8, 401-30	8.6	248
18	Anatomical MRI of the developing human brain: what have we learned?. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 2001 , 40, 1012-20	7.2	337
17	Prenatal exposure to famine and brain morphology in schizophrenia. <i>American Journal of Psychiatry</i> , 2000 , 157, 1170-2	11.9	149
16	Structural brain abnormalities in patients with schizophrenia and their healthy siblings. <i>American Journal of Psychiatry</i> , 2000 , 157, 416-21	11.9	196
15	Frontal lobe damage and thalamic volume changes. <i>NeuroReport</i> , 2000 , 11, 3039-41	1.7	6
14	Multivariate genetic analysis of brain structure in an extended twin design. <i>Behavior Genetics</i> , 2000 , 30, 311-9	3.2	95
13	Odor discrimination and task duration in young and older adults. Chemical Senses, 2000, 25, 461-4	4.8	19

Evidence of fronto-thalamic involvement in schizophrenia. Progress in Brain Research, 2000, 126, 343-55 2.9 12 1 Neuropsychological dysfunctions in siblings discordant for schizophrenia. Psychiatry Research, 2000, 11 9.9 33 95, 227-35 Statistical sulcal shape comparisons: application to the detection of genetic encoding of the central 60 10 7.9 sulcus shape. NeuroImage, 2000, 11, 564-74 Outcome of schizophrenia in relation to brain abnormalities. Schizophrenia Bulletin, 1999, 25, 337-48 1.3 9 27 Volumetric analysis of frontal lobe regions in schizophrenia: relation to cognitive function and 8 7.9 170 symptomatology. Biological Psychiatry, 1999, 45, 1597-605 Partial volume decrease of the thalamus in relatives of patients with schizophrenia. American 11.9 136 Journal of Psychiatry, **1998**, 155, 1784-6 ENIGMA and Global Neuroscience: A Decade of Large-Scale Studies of the Brain in Health and 6 7 Disease across more than 40 Countries Genetic Architecture of Subcortical Brain Structures in Over 40,000 Individuals Worldwide Dissimilarity in sulcal width patterns in the cortex can be used to identify patients with 1 4 schizophrenia with extreme deficits in cognitive performance Cortical Thickness Trajectories across the Lifespan: Data from 17,075 healthy individuals aged 3-90 years 4 Subcortical Volume Trajectories across the Lifespan: Data from 18,605 healthy individuals aged 6 3-90 years Localizing genomic regions contributing to the extremes of externalizing behavior: ADHD, aggressive and antisocial behaviors