List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/337143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combination therapy targeting Erk1/2 and CDK4/6i in relapsed refractory multiple myeloma. Leukemia, 2022, 36, 1088-1101.	3.3	6
2	Abstract NG14: Reduction in mitochondrial priming drives resistance to targeted therapy in acute myeloid leukemia. , 2021, , .		1
3	P-046: B cell transcriptional coactivator POU2AF1 (BOB-1) modulates the protein synthesis and offers a potential vulnerability in multiple myeloma Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S63-S64.	0.2	Ο
4	P-089: Identification of novel targets in multiple myeloma for "undruggable―RAS/CDK signaling cascade. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S87-S88.	0.2	0
5	P-020: Altered mRNA splicing identifies novel biomarkers and therapeutic targets in AL (Amyloid) Tj ETQq1 1 0.7	′84314 rgBT 0:2	Overlock
6	Altered Expression of Epigenetic Modifiers Identifies Novel Biomarkers and Therapeutic Targets in AL Amyloidosis. Blood, 2021, 138, 4719-4719.	0.6	0
7	B Cell Transcriptional Coactivator <i>POU2AF1</i> (BOB-1) Is an Early Transcription Factor Modulating the Protein Synthesis and Ribosomal Biogenesis in Multiple Myeloma: With Therapeutic Implication. Blood, 2021, 138, 2670-2670.	0.6	2
8	Identification of Novel Targets Based on Splicing Alterations for Undruggable RAS/CDK Signaling Cascade in Multiple Myeloma. Blood, 2021, 138, 2688-2688.	0.6	0
9	The effects of MicroRNA deregulation on pre-RNA processing network in multiple myeloma. Leukemia, 2020, 34, 167-179.	3.3	11
10	Evaluation of ERK as a therapeutic target in acute myelogenous leukemia. Leukemia, 2020, 34, 625-629.	3.3	9
11	Reduced Mitochondrial Apoptotic Priming Drives Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Cancer Cell, 2020, 38, 872-890.e6.	7.7	80
12	The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: therapeutic implications. Blood, 2020, 136, 2334-2345.	0.6	58
13	Effects of the multiâ€kinase inhibitor midostaurin in combination with chemotherapy in models of acute myeloid leukaemia. Journal of Cellular and Molecular Medicine, 2020, 24, 2968-2980.	1.6	16
14	The combination of FLT3 and SYK kinase inhibitors is toxic to leukaemia cells with CBL mutations. Journal of Cellular and Molecular Medicine, 2020, 24, 2145-2156.	1.6	2
15	Inhibition of the deubiquitinase USP10 induces degradation of SYK. British Journal of Cancer, 2020, 122, 1175-1184.	2.9	19
16	Pre-Clinical Validation of a Novel Erk1/2 and CDK4/6 Inhibitor Combination in Multiple Myeloma (MM). Blood, 2020, 136, 22-23.	0.6	0
17	Exploring <i>POU2AF1 (</i> BOB-1 <i>) D</i> ependency and Transcription Addiction in Multiple Myeloma. Blood, 2020, 136, 49-49.	0.6	0
18	Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLUâ€285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies. British Journal of Haematology, 2019, 187, 488-501.	1.2	30

SOPHIA ADAMIA

#	Article	IF	CITATIONS
19	Aberrant RHAMM (receptor for hyaluronan-mediated motility) splicing in MM is associated with upregulation of PTBP1/2 (polypyrimidine tract binding protein 1/2): therapeutic implications. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e123-e124.	0.2	0
20	Whole-genome bisulfite sequencing identifies HDAC3-mediated DNA methylation in multiple myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e72.	0.2	1
21	Isocitrate dehydrogenase 1 and 2 mutations, 2â€hydroxyglutarate levels, and response to standard chemotherapy for patients with newly diagnosed acute myeloid leukemia. Cancer, 2019, 125, 541-549.	2.0	23
22	Abstract 2990: Individualized functional approach to tailoring acute myeloid leukemia therapy. , 2019, ,		0
23	Altered Genomic and Epigenetic Profiling of Myeloma Bone Marrow Stromal Cells Identifies Targets for Current and Future Immunotherapeutic Approaches. Blood, 2019, 134, 3079-3079.	0.6	0
24	Individualized Mitochondrial Functional Approach to Combination of BCL-2 and MCL-1 Antagonism in Acute Myeloid Leukemia. Blood, 2019, 134, 2551-2551.	0.6	0
25	Aberrant RHAMM Splicing in Multiple Myeloma (MM) and Its Implications for Immunotherapy. Blood, 2019, 134, 1804-1804.	0.6	0
26	Abstract 2990: Individualized functional approach to tailoring acute myeloid leukemia therapy. , 2019, ,		0
27	Cell Type-Specific Deregulation of Polypyrimidine Tract- Binding Proteins (PTBPs) Drive Aberrant Splicing in Multiple Myeloma (MM) and Acute Myeloid Leukemia (AML). Blood, 2018, 132, 3895-3895.	0.6	0
28	Inhibition of USP10 induces degradation of oncogenic FLT3. Nature Chemical Biology, 2017, 13, 1207-1215.	3.9	89
29	Predispositions and Origins of Waldenstrom Macroglobulinemia: Implications from Genetic Analysis. , 2017, , 35-48.		0
30	A Functional Approach to Precision Medicine Identifies Targeted Therapies for Acute Myeloid Leukemia. Blood, 2017, 130, 853-853.	0.6	0
31	Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood, 2016, 127, 1138-1150.	0.6	89
32	Characterization of selective and potent PI3Kδ inhibitor (PI3KD-IN-015) for B-Cell malignances. Oncotarget, 2016, 7, 32641-32651.	0.8	7
33	FLT3 Splice Variant (FLT3Va) As a Potential Immunotherapeutic Target in Patients with Acute Myeloid Leukemia (AML). Blood, 2016, 128, 1681-1681.	0.6	0
34	APO866 Increases Antitumor Activity of Cyclosporin-A by Inducing Mitochondrial and Endoplasmic Reticulum Stress in Leukemia Cells. Clinical Cancer Research, 2015, 21, 3934-3945.	3.2	31
35	A Novel Synthetic Lethal Approach Targeting SIRT6 in Acute Myeloid Leukemia. Blood, 2015, 126, 1375-1375.	0.6	1
36	Use of 2HG Levels in the Serum, Urine, or Bone Marrow to Predict IDH Mutations in Adults with Acute Myeloid Leukemia. Blood, 2015, 126, 2597-2597.	0.6	6

#	Article	IF	CITATIONS
37	Abstract 3972: MicroRNAs as potential therapeutic agents for AML: Targeting the AML1-ETO Oncogene by pre-miR-520 and -373. , 2015, , .		0
38	Aberrant Posttranscriptional Processing of Hyaluronan Synthase 1 in Malignant Transformation and Tumor Progression. Advances in Cancer Research, 2014, 123, 67-94.	1.9	11
39	A Genome-Wide Aberrant RNA Splicing in Patients with Acute Myeloid Leukemia Identifies Novel Potential Disease Markers and Therapeutic Targets. Clinical Cancer Research, 2014, 20, 1135-1145.	3.2	85
40	Role of genotype-based approach in the clinical management of adult acute myeloid leukemia with normal cytogenetics. Leukemia Research, 2014, 38, 649-659.	0.4	38
41	NOTCH2 and FLT3 gene mis-splicings are common events in patients with acute myeloid leukemia (AML): new potential targets in AML. Blood, 2014, 123, 2816-2825.	0.6	36
42	Inherited Polymorphisms in Hyaluronan Synthase 1 Predict Risk of Systemic B-Cell Malignancies but Not of Breast Cancer. PLoS ONE, 2014, 9, e100691.	1.1	7
43	Diagnostic Features and 2-Hydroxyglutarate (2-HG) Levels Among Acute Myeloid Leukemia (AML) Patients with and without Isocitrate Dehydrogenase (IDH) Mutations. Blood, 2014, 124, 1045-1045.	0.6	1
44	IL-17A-Mediated Notch Signaling in Multiple Myeloma. Blood, 2014, 124, 3434-3434.	0.6	0
45	IDH1 Splicing Alterations in Patients with AML and Their Relationship to Blood 2HG Levels. Blood, 2014, 124, 1060-1060.	0.6	0
46	Mir-23b Plays a Critical Role As a Tumor Suppressor miRNA In Multiple Myeloma. Blood, 2013, 122, 122-122.	0.6	3
47	Non Homologous End Joining, a Marker Of Genomic Instability Is Elevated In Multiple Myeloma: A New Prognostic Factor. Blood, 2013, 122, 124-124.	0.6	10
48	Aberrant Splicing, Hyaluronan Synthases and Intracellular Hyaluronan as Drivers of Oncogenesis and Potential Drug Targets. Current Cancer Drug Targets, 2013, 13, 347-361.	0.8	25
49	Alternative Splicing in Chronic Myeloid Leukemia (CML): A Novel Therapeutic Target?. Current Cancer Drug Targets, 2013, 13, 735-748.	0.8	10
50	Identification Of Novel Alternative Splice Variants Of Sirtuins In Multiple Myeloma: Therapeutic Implications. Blood, 2013, 122, 3121-3121.	0.6	0
51	Aberrant Splicing In Patients With AML Is Associated With Over- Expression Of Specific Splicing Factors. Blood, 2013, 122, 3749-3749.	0.6	3
52	Aberrant Non-Homologous End Joining in Multiple Myeloma: A Role in Genomic Instability and As Potential Prognostic Marker Blood, 2012, 120, 2932-2932.	0.6	3
53	Prospective evaluation of serial 2-hydroxyglutarate in acute myeloid leukemia (AML) to determine response to therapy and predict relapse Journal of Clinical Oncology, 2012, 30, 6606-6606.	0.8	0
54	Genome-Wide Aberrant Splicing in Patients with Acute Myelold Leukemia (AML) Is Associated with Altered Expression of Splicing Factors. Blood, 2012, 120, 652-652.	0.6	0

#	Article	IF	CITATIONS
55	Formation of the Functional Niche in Vitro by Mimicking the Pathophysiological Features of the Bone Marrow Microenvironment in Multiple Myeloma. Blood, 2012, 120, 1812-1812.	0.6	0
56	Lenalidomide targets clonogenic side population in multiple myeloma: pathophysiologic and clinical implications. Blood, 2011, 117, 4409-4419.	0.6	141
57	The dChip survival analysis module for microarray data. BMC Bioinformatics, 2011, 12, 72.	1.2	9
58	Reversible Resistance Induced by FLT3 Inhibition: A Novel Resistance Mechanism in Mutant FLT3-Expressing Cells. PLoS ONE, 2011, 6, e25351.	1.1	42
59	Genome-Wide Aberrant Splicing in Patients with Acute Myeloid Leukemia (AML) Indetifies Potential Novel Targets. Blood, 2011, 118, 761-761.	0.6	Ο
60	Discovery of a small-molecule type II inhibitor of wild-type and gatekeeper mutants of BCR-ABL, PDGFRα, Kit, and Src kinases: novel type II inhibitor of gatekeeper mutants. Blood, 2010, 115, 4206-4216.	0.6	61
61	Discovery and Characterization of Novel Mutant FLT3 Kinase Inhibitors. Molecular Cancer Therapeutics, 2010, 9, 2468-2477.	1.9	15
62	Identification of Potential Therapeutic Targets Using Genome-Wide Analysis of Alternative Splicing (AS) In Patients with Acute Myeloid Leukemia (AML). Blood, 2010, 116, 177-177.	0.6	1
63	Increased Incidence of Transformation and Myelodysplasia/Acute Leukemia in Patients With Waldenström Macroglobulinemia Treated With Nucleoside Analogs. Journal of Clinical Oncology, 2009, 27, 250-255.	0.8	170
64	Expression of regulatory genes for lymphoplasmacytic cell differentiation in Waldenstrom Macroglobulinemia. British Journal of Haematology, 2009, 145, 59-63.	1.2	17
65	Genetic Abnormalities in Waldenström's Macroglobulinemia. Clinical Lymphoma and Myeloma, 2009, 9, 30-32.	1.4	3
66	Identification of Novel Splice Variants of Multiple Genes Using Genome-Wide Analysis of Alternative Splicing in Patients with Acute Myeloid Leukemia Blood, 2009, 114, 1278-1278.	0.6	2
67	Biological and Therapeutic Potential of Mir-155, 585 and Let-7f in Myeloma in Vitro and In Vivo Blood, 2009, 114, 833-833.	0.6	1
68	The Functional Role of Microrna 15a/16-1 as Tumor Suppressor Genes in Multiple Myeloma Blood, 2009, 114, 1963-1963.	0.6	0
69	Micro-RNA Expression Profiling Reveals Distinct Correlates to Disease Pathogenesis, and Identifies Novel Pathways Involved in Tumor Cell Senescence and IL-12A Signaling Blood, 2009, 114, 2950-2950.	0.6	0
70	Stromal-mediated protection of tyrosine kinase inhibitor-treated BCR-ABL-expressing leukemia cells. Molecular Cancer Therapeutics, 2008, 7, 1121-1129.	1.9	65
71	Inherited and acquired variations in the hyaluronan synthase 1 (HAS1) gene may contribute to disease progression in multiple myeloma and Waldenstrom macroglobulinemia. Blood, 2008, 112, 5111-5121.	0.6	30
72	Microrna Expression Profile Identifies Distinct Clinically Relevant Sub-Groups in Multiple Myeloma: Novel Prognostic Markers and Potential Targets for Therapy. Blood, 2008, 112, 96-96.	0.6	2

#	Article	IF	CITATIONS
73	Sp1 Transcription Factor as a Novel Therapeutic Target in Multiple Myeloma (MM). Blood, 2008, 112, 3664-3664.	0.6	0
74	High-Throughput Microrna Profiling in Patients with Waldenstrom's Macroglobulinemia Blood, 2008, 112, 1704-1704.	0.6	5
75	Microfluidic Chips for Detecting the t(4;14) Translocation and Monitoring Disease during Treatment Using Reverse Transcriptase-Polymerase Chain Reaction Analysis of IgH-MMSET Hybrid Transcripts. Journal of Molecular Diagnostics, 2007, 9, 358-367.	1.2	22
76	Novel Agents in the Treatment of Waldenström's Macroglobulinemia. Clinical Lymphoma and Myeloma, 2007, 7, S199-S206.	1.4	15
77	Establishment of BCWM.1 cell line for Waldenström's macroglobulinemia with productive in vivo engraftment in SCID-hu mice. Experimental Hematology, 2007, 35, 1366-1375.	0.2	61
78	Imatinib Mesylate (Gleevec®) Produces Responses in Patients with Relapsed/Refractory Waldenstrom's Macroglobulinemia Blood, 2007, 110, 2575-2575.	0.6	3
79	Comprehensive Molecular Characterization of Malignant and Microenvironmental Cells in Waldenstrom's Macroglobulinemia by Gene Expression Profiling Blood, 2007, 110, 3174-3174.	0.6	8
80	Biological Sequelae of TRAF2 Downregulation in Waldenstrom Macroglobulinemia Cells Blood, 2007, 110, 3526-3526.	0.6	4
81	Identification Genetic Variations (GVs) Causing Splicing of TNF Family Members and Adaptor Proteins That Modulate NFkB Pathways in Waldenstrom's Maroglobulinemia (WM) Blood, 2007, 110, 2516-2516.	0.6	Ο
82	Germline and Somatic Mutations in the Hyaluronan Synthase–1 (HAS1) Gene May Contribute to Oncogenesis in Multiple Myeloma (MM) and Waldenstrom's Macroglobulinemia (WM) Blood, 2007, 110, 2488-2488.	0.6	0
83	Resveratrol Exerts Antiproliferative Effect and Induces Apoptosis in Waldenstrom's Macroglobulinemia Blood, 2007, 110, 1383-1383.	0.6	2
84	Accumulation of Inherited and Acquired Mutations in Hyaluronan Synthase1 Gene May Contribute Oncogenesis in Multiple Myeloma and Waldenstrom's Macroglobulinemia Blood, 2006, 108, 3432-3432.	0.6	0
85	Intronic splicing of hyaluronan synthase 1 (HAS1): a biologically relevant indicator of poor outcome in multiple myeloma. Blood, 2005, 105, 4836-4844.	0.6	61
86	Hyaluronan and Hyaluronan Synthases: Potential Therapeutic Targets in Cancer. Current Drug Targets Cardiovascular & Haematological Disorders, 2005, 5, 3-14.	2.0	140
87	Potential Impact of a Single Nucleotide Polymorphism in the Hyaluronan Synthase 1 Gene in Waldenström's Macroglobulinemia. Clinical Lymphoma and Myeloma, 2005, 5, 253-256.	2.1	10
88	Establishment of a Waldenstrom's Macroglobulinemia Cell Line (BCWM.1) with Productive In Vivo Engraftment in SCID-hu Mice Blood, 2005, 106, 979-979.	0.6	5
89	RHAMM expression and isoform balance predict aggressive disease and poor survival in multiple myeloma. Blood, 2004, 104, 1151-1158.	0.6	85
90	Abnormal expression of hyaluronan synthases in patients with Waldenstrom's macroglobulimenia. Seminars in Oncology, 2003, 30, 165-168.	0.8	25