
Jerome Fresnais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3371002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enthalpy profile of pH-induced flocculation and redispersion of polyacrylic acid-coated nanoparticles in protic ionic liquid, N,N-diethylethanolammonium trifluoromethanesulfonate. Journal of Molecular Liquids, 2022, 349, 118146.	2.3	1
2	Influence of polycation/cation competition on the aggregation threshold of magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125876.	2.3	3
3	Viscoelastic and dielectric properties of 5CB nematic liquid crystal doped by magnetic and nonmagnetic nanoparticles. Physical Review E, 2020, 102, 052703.	0.8	21
4	Coating Effect on the 1H—NMR Relaxation Properties of Iron Oxide Magnetic Nanoparticles. Nanomaterials, 2020, 10, 1660.	1.9	8
5	Parallelized Manipulation of Adherent Living Cells by Magnetic Nanoparticles-Mediated Forces. International Journal of Molecular Sciences, 2020, 21, 6560.	1.8	13
6	Magnetic Field-Driven Deformation, Attraction, and Coalescence of Nonmagnetic Aqueous Droplets in an Oil-Based Ferrofluid. Langmuir, 2020, 36, 5048-5057.	1.6	32
7	Magnetic spatiotemporal control of SOS1 coupled nanoparticles for guided neurite growth in dopaminergic single cells. Scientific Reports, 2020, 10, 22452.	1.6	6
8	Novel Tools towards Magnetic Guidance of Neurite Growth: (I) Guidance of Magnetic Nanoparticles into Neurite Extensions of Induced Human Neurons and In Vitro Functionalization with RAS Regulating Proteins. Journal of Functional Biomaterials, 2019, 10, 32.	1.8	19
9	New Platform for Gravitational Microfluidic Using Ferrofluids. Langmuir, 2019, 35, 9133-9138.	1.6	2
10	Recent insights in magnetic hyperthermia: From the "hot-spot―effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids. Advanced Drug Delivery Reviews, 2019, 138, 233-246.	6.6	122
11	NMR relaxivity of coated and non-coated size-sorted maghemite nanoparticles. Molecular Physics, 2019, 117, 990-999.	0.8	4
12	Thermal Polymerization on the Surface of Iron Oxide Nanoparticles Mediated by Magnetic Hyperthermia: Implications for Multishell Grafting and Environmental Applications. ACS Applied Nano Materials, 2018, 1, 547-555.	2.4	19
13	Dispersion mechanism of polyacrylic acid-coated nanoparticle in protic ionic liquid, N,N-diethylethanolammonium trifluoromethanesulfonate. Journal of Colloid and Interface Science, 2018, 516, 248-253.	5.0	6
14	Hyperthermia Efficiency of Magnetic Nanoparticles in Dense Aggregates of Cerium Oxide/Iron Oxide Nanoparticles. Applied Sciences (Switzerland), 2018, 8, 1241.	1.3	12
15	Magnetic Nanoparticles Create Hot Spots in Polymer Matrix for Controlled Drug Release. Nanomaterials, 2018, 8, 850.	1.9	33
16	Thermoresponsive hybrid double-crosslinked networks using magnetic iron oxide nanoparticles as crossing points. Polymer Chemistry, 2018, 9, 4642-4650.	1.9	9
17	Oriented Gold Nanorods and Gold Nanorod Chains within Smectic Liquid Crystal Topological Defects. ACS Nano, 2017, 11, 6728-6738.	7.3	50
18	Influence of a dispersion of magnetic and nonmagnetic nanoparticles on the magnetic Fredericksz transition of the liquid crystal 5CB. Physical Review E, 2017, 96, 012706.	0.8	33

JEROME FRESNAIS

#	Article	IF	CITATIONS
19	Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements. Journal of Magnetism and Magnetic Materials, 2017, 421, 384-392.	1.0	24
20	Tuning the architectural integrity of high-performance magneto-fluorescent core-shell nanoassemblies in cancer cells. Journal of Colloid and Interface Science, 2016, 479, 139-149.	5.0	17
21	Magnetic hyperthermia-induced drug release from ureasil-PEO-γ-Fe ₂ O ₃ nanocomposites. RSC Advances, 2016, 6, 63291-63295.	1.7	17
22	Controlling nanoparticles dispersion in ionic liquids by tuning the pH. Journal of Colloid and Interface Science, 2015, 454, 105-111.	5.0	22
23	Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes. Nature Communications, 2015, 6, 10139.	5.8	39
24	Design of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditions. Nanoscale, 2015, 7, 18891-18896.	2.8	77
25	Hyperthermia of Magnetic Nanoparticles: Experimental Study of the Role of Aggregation. Journal of Physical Chemistry C, 2015, 119, 28148-28154.	1.5	118
26	Evidence of a two-step process and pathway dependency in the thermodynamics of poly(diallyldimethylammonium chloride)/poly(sodium acrylate) complexation. Soft Matter, 2014, 10, 9496-9505.	1.2	87
27	Highly cohesive dual nanoassemblies for complementary multiscale bioimaging. Journal of Materials Chemistry B, 2014, 2, 7747-7755.	2.9	13
28	Functional Iron Oxide Magnetic Nanoparticles with Hyperthermiaâ€Induced Drug Release Ability by Using a Combination of Orthogonal Click Reactions. Angewandte Chemie - International Edition, 2013, 52, 14152-14156.	7.2	133
29	Poly(acrylic acid)-coated iron oxide nanoparticles: Quantitative evaluation of the coating properties and applications for the removal of a pollutant dye. Journal of Colloid and Interface Science, 2013, 395, 24-30.	5.0	85
30	Superparamagnetic iron oxide polyacrylic acid coated γ-Fe2O3 nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice. Toxicology and Applied Pharmacology, 2013, 266, 276-288.	1.3	60
31	Photoactive chelating organic nanospheres as central platforms of bimodal hybrid nanoparticles. Journal of Materials Chemistry C, 2013, 1, 3879.	2.7	13
32	Controlled grafted brushes of polystyrene on magnetic γ-Fe2O3 nanoparticles via nitroxide-mediated polymerization. Soft Matter, 2012, 8, 3407.	1.2	24
33	Interfacial Activity of Phosphonated-PEG Functionalized Cerium Oxide Nanoparticles. Langmuir, 2012, 28, 11448-11456.	1.6	41
34	Organic nanoparticles as a central plateform of magnetofluorescent nano-assemblies toward two-photon bioimaging applications. Proceedings of SPIE, 2012, , .	0.8	0
35	Polydimethylsiloxane (PDMS) Coating onto Magnetic Nanoparticles Induced by Attractive Electrostatic Interaction. Applied Sciences (Switzerland), 2012, 2, 485-495.	1.3	21
36	A Universal Scaling Law to Predict the Efficiency of Magnetic Nanoparticles as MRI T2â€Contrast Agents. Advanced Healthcare Materials, 2012, 1, 502-512.	3.9	174

JEROME FRESNAIS

#	Article	IF	CITATIONS
37	Magnetic micropillars as a tool to govern substrate deformations. Lab on A Chip, 2011, 11, 2630.	3.1	59
38	Solvatochromic dissociation of non-covalent fluorescent organic nanoparticles upon cell internalization. Physical Chemistry Chemical Physics, 2011, 13, 13268.	1.3	31
39	Magnetic Nanowires Generated via the Waterborne Desalting Transition Pathway. ACS Applied Materials & Interfaces, 2011, 3, 1049-1054.	4.0	34
40	Dynamics of paramagnetic nanostructured rods under rotating field. Journal of Magnetism and Magnetic Materials, 2011, 323, 1309-1313.	1.0	44
41	Sensitive High Frequency AC Susceptometry in Magnetic Nanoparticle Applications. AIP Conference Proceedings, 2010, , .	0.3	39
42	Influence of the Formulation Process in Electrostatic Assembly of Nanoparticles and Macromolecules in Aqueous Solution: The Interaction Pathway. Journal of Physical Chemistry C, 2010, 114, 16373-16381.	1.5	28
43	Influence of the Formulation Process in Electrostatic Assembly of Nanoparticles and Macromolecules in Aqueous Solution: The Mixing Pathway. Journal of Physical Chemistry C, 2010, 114, 12870-12877.	1.5	28
44	Growth mechanism of nanostructured superparamagnetic rods obtained by electrostatic co-assembly. Soft Matter, 2010, 6, 1997.	1.2	62
45	Electrostatic Coâ€assembly of Magnetic Nanoparticles and Fluorescent Nanospheres: A Versatile Approach Towards Bimodal Nanorods. Small, 2009, 5, 2533-2536.	5.2	25
46	Stabilization and controlled association of superparamagnetic nanoparticles using block copolymers. Journal of Magnetism and Magnetic Materials, 2009, 321, 667-670.	1.0	12
47	Nanoparticle Aggregation Controlled by Desalting Kinetics. Journal of Physical Chemistry C, 2009, 113, 16371-16379.	1.5	61
48	Plasma-Treated Superhydrophobic Polyethylene Surfaces: Fabrication, Wetting and Dewetting Properties. Journal of Adhesion Science and Technology, 2009, 23, 447-467.	1.4	21
49	Electrosteric Enhanced Stability of Functional Sub-10 nm Cerium and Iron Oxide Particles in Cell Culture Medium. Langmuir, 2009, 25, 9064-9070.	1.6	110
50	Electrostatic Coâ€Assembly of Iron Oxide Nanoparticles and Polymers: Towards the Generation of Highly Persistent Superparamagnetic Nanorods. Advanced Materials, 2008, 20, 3877-3881.	11.1	97
51	Redispersible Hybrid Nanopowders: Cerium Oxide Nanoparticle Complexes with Phosphonated-PEG Oligomers. ACS Nano, 2008, 2, 879-888.	7.3	98
52	Organic versus hybrid coacervate complexes: co-assembly and adsorption properties. Soft Matter, 2008, 4, 577.	1.2	27
53	Reorientation kinetics of superparamagnetic nanostructured rods. Journal of Physics Condensed Matter, 2008, 20, 494216.	0.7	9
54	Stability and Adsorption Properties of Electrostatic Complexes:  Design of Hybrid Nanostructures for Coating Applications. Langmuir, 2007, 23, 11996-11998.	1.6	31

#	Article	IF	CITATIONS
55	Synthesis of transparent superhydrophobic polyethylene surfaces. Surface and Coatings Technology, 2006, 200, 5296-5305.	2.2	140