List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3370779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioactive Silicate Nanoplatelets for Osteogenic Differentiation of Human Mesenchymal Stem Cells. Advanced Materials, 2013, 25, 3329-3336.	11.1	448
2	The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies. Biomacromolecules, 2014, 15, 2327-2346.	2.6	417
3	Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials, 2006, 27, 6123-6137.	5.7	411
4	A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials, 2001, 22, 883-889.	5.7	354
5	Modified Cellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials, 2010, 31, 7494-7502.	5.7	342
6	Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Journal of Biomedical Materials Research Part B, 2003, 67A, 87-95.	3.0	326
7	Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2005, 16, 1099-1104.	1.7	310
8	Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies. Biomacromolecules, 2008, 9, 2764-2774.	2.6	240
9	Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomaterialia, 2012, 8, 4173-4180.	4.1	209
10	Influence of the Porosity of Starch-Based Fiber Mesh Scaffolds on the Proliferation and Osteogenic Differentiation of Bone Marrow Stromal Cells Cultured in a Flow Perfusion Bioreactor. Tissue Engineering, 2006, 12, 801-809.	4.9	193
11	Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Materials Science and Engineering C, 2002, 20, 19-26.	3.8	191
12	Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials, 2009, 30, 526-534.	5.7	184
13	Photocrosslinkable <i>Kappa</i> arrageenan Hydrogels for Tissue Engineering Applications. Advanced Healthcare Materials, 2013, 2, 895-907.	3.9	178
14	Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials, 2001, 22, 1911-1917.	5.7	175
15	Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications. Bioconjugate Chemistry, 2015, 26, 1571-1581.	1.8	172
16	Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials, 2008, 29, 4306-4313.	5.7	167
17	Carrageenan-Based Hydrogels for the Controlled Delivery of PDGF-BB in Bone Tissue Engineering Applications. Biomacromolecules, 2009, 10, 1392-1401.	2.6	165
18	Cell Delivery Systems Using Alginate–Carrageenan Hydrogel Beads and Fibers for Regenerative Medicine Applications. Biomacromolecules, 2011, 12, 3952-3961.	2.6	156

#	Article	IF	CITATIONS
19	Cartilage Tissue Engineering Using Electrospun PCL Nanofiber Meshes and MSCs. Biomacromolecules, 2010, 11, 3228-3236.	2.6	155
20	Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter, 2012, 2, 278-289.	2.6	151
21	Development of new chitosan/carrageenan nanoparticles for drug delivery applications. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1265-1272.	2.1	150
22	Distinct Stem Cells Subpopulations Isolated from Human Adipose Tissue Exhibit Different Chondrogenic and Osteogenic Differentiation Potential. Stem Cell Reviews and Reports, 2011, 7, 64-76.	5.6	143
23	Starch–poly(εâ€caprolactone) and starch–poly(lactic acid) fibreâ€mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 243-252.	1.3	140
24	Adipose Tissue-Derived Stem Cells and Their Application in Bone and Cartilage Tissue Engineering. Tissue Engineering - Part B: Reviews, 2009, 15, 113-125.	2.5	139
25	Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. Tissue Engineering - Part B: Reviews, 2017, 23, 211-224.	2.5	133
26	Engineering tendon and ligament tissues: present developments towards successful clinical products. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 673-686.	1.3	132
27	Plasma Surface Modification of Chitosan Membranes: Characterization and Preliminary Cell Response Studies. Macromolecular Bioscience, 2008, 8, 568-576.	2.1	131
28	Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part I: Recapitulation of Native Tissue Healing and Variables for the Design of Delivery Systems. Tissue Engineering - Part B: Reviews, 2013, 19, 308-326.	2.5	131
29	Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects. Journal of Orthopaedic Research, 2010, 28, 1193-1199.	1.2	121
30	In Vitro Localization of Bone Growth Factors in Constructs of Biodegradable Scaffolds Seeded with Marrow Stromal Cells and Cultured in a Flow Perfusion Bioreactor. Tissue Engineering, 2006, 12, 177-188.	4.9	120
31	Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate. ACS Nano, 2021, 15, 175-209.	7.3	119
32	An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. Acta Biomaterialia, 2013, 9, 6790-6797.	4.1	118
33	Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering. Biomaterials, 2007, 28, 240-248.	5.7	116
34	Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomaterialia, 2018, 77, 155-171.	4.1	109
35	Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery. Tissue Engineering - Part B: Reviews, 2013, 19, 327-352.	2.5	108
36	3D Mimicry of Nativeâ€Tissueâ€Fiber Architecture Guides Tendonâ€Derived Cells and Adipose Stem Cells into Artificial Tendon Constructs. Small, 2017, 13, 1700689.	5.2	106

#	Article	IF	CITATIONS
37	Preliminary study on the adhesion and proliferation of human osteoblasts on starch-based scaffolds. Materials Science and Engineering C, 2002, 20, 27-33.	3.8	105
38	The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials, 2014, 35, 9087-9099.	5.7	104
39	Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 1 Available systems and their properties. International Materials Reviews, 2004, 49, 261-273.	9.4	100
40	Mesenchymal Stem Cells Empowering Tendon Regenerative Therapies. International Journal of Molecular Sciences, 2019, 20, 3002.	1.8	99
41	Chondrogenic potential of injectable <i>κ</i> -carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 550-563.	1.3	97
42	Natural-Based Hydrogels for Tissue Engineering Applications. Molecules, 2020, 25, 5858.	1.7	93
43	Enhancing the Biomechanical Performance of Anisotropic Nanofibrous Scaffolds in Tendon Tissue Engineering: Reinforcement with Cellulose Nanocrystals. Advanced Healthcare Materials, 2016, 5, 1364-1375.	3.9	91
44	Understanding the Role of Growth Factors in Modulating Stem Cell Tenogenesis. PLoS ONE, 2013, 8, e83734.	1.1	90
45	Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, s47-s59.	1.3	88
46	Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends in Biotechnology, 2015, 33, 471-479.	4.9	83
47	Silk hydrogels from non-mulberry and mulberry silkworm cocoons processed with ionic liquids. Acta Biomaterialia, 2013, 9, 8972-8982.	4.1	79
48	Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. Journal of Controlled Release, 2012, 162, 19-27.	4.8	78
49	Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical Materials Research - Part A, 2009, 91A, 175-186.	2.1	73
50	Cell Adhesion and Proliferation onto Chitosan-based Membranes Treated by Plasma Surface Modification. Journal of Biomaterials Applications, 2011, 26, 101-116.	1.2	72
51	Antimicrobial coating of spider silk to prevent bacterial attachment on silk surgical sutures. Acta Biomaterialia, 2019, 99, 236-246.	4.1	72
52	A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. Journal of Materials Science: Materials in Medicine, 2007, 18, 295-302.	1.7	71
53	Magneto-mechanical actuation of magnetic responsive fibrous scaffolds boosts tenogenesis of human adipose stem cells. Nanoscale, 2019, 11, 18255-18271.	2.8	68
54	Tissue-engineered magnetic cell sheet patches for advanced strategies in tendon regeneration. Acta Biomaterialia, 2017, 63, 110-122.	4.1	67

#	Article	IF	CITATIONS
55	Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 378-380.	1.3	65
56	Multifunctional magnetic-responsive hydrogels to engineer tendon-to-bone interface. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2375-2385.	1.7	65
57	Hybrid 3D structure of poly(d,l-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering. Journal of Supercritical Fluids, 2010, 54, 320-327.	1.6	64
58	Effect of Anatomical Origin and Cell Passage Number on the Stemness and Osteogenic Differentiation Potential of Canine Adipose-Derived Stem Cells. Stem Cell Reviews and Reports, 2012, 8, 1211-1222.	5.6	64
59	Chondrogenic phenotype of different cells encapsulated in κâ€carrageenan hydrogels for cartilage regeneration strategies. Biotechnology and Applied Biochemistry, 2012, 59, 132-141.	1.4	64
60	Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. Journal of Controlled Release, 2014, 187, 66-73.	4.8	63
61	Rapid vascularization of starch-poly(caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e136-e143.	1.3	62
62	Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering. Acta Biomaterialia, 2012, 8, 3765-3776.	4.1	61
63	Selfâ€Assembled Hydrogel Fiber Bundles from Oppositely Charged Polyelectrolytes Mimic Microâ€∤Nanoscale Hierarchy of Collagen. Advanced Functional Materials, 2017, 27, 1606273.	7.8	61
64	Blood derivatives awaken in regenerative medicine strategies to modulate wound healing. Advanced Drug Delivery Reviews, 2018, 129, 376-393.	6.6	59
65	The Role of Lipase and α-Amylase in the Degradation of Starch/Poly(ɛ-Caprolactone) Fiber Meshes and the Osteogenic Differentiation of Cultured Marrow Stromal Cells. Tissue Engineering - Part A, 2009, 15, 295-305.	1.6	58
66	A new route to produce starchâ€based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation. Journal of Biomedical Materials Research - Part A, 2010, 92A, 369-377.	2.1	58
67	Osteogenic differentiation of two distinct subpopulations of human adipose-derived stem cells: an in vitro and in vivo study. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 1-11.	1.3	58
68	From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine, 2012, 7, 1045-1066.	1.7	57
69	Tissue Engineering: Key Elements and Some Trends. Macromolecular Bioscience, 2004, 4, 737-742.	2.1	56
70	Fabrication of Endothelial Cell-Laden Carrageenan Microfibers for Microvascularized Bone Tissue Engineering Applications. Biomacromolecules, 2014, 15, 2849-2860.	2.6	56
71	Evaluation of the <i>in vitro</i> and <i>in vivo</i> biocompatibility of carrageenan-based hydrogels. Journal of Biomedical Materials Research - Part A, 2014, 102, 4087-4097.	2.1	56
72	A Textile Platform Using Continuous Aligned and Textured Composite Microfibers to Engineer Tendonâ€ŧoâ€Bone Interface Gradient Scaffolds. Advanced Healthcare Materials, 2019, 8, e1900200.	3.9	56

#	Article	IF	CITATIONS
73	Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 2 Systems for temporary replacement and advanced tissue regeneration. International Materials Reviews, 2004, 49, 274-285.	9.4	55
74	Strontium-Doped Bioactive Glass Nanoparticles in Osteogenic Commitment. ACS Applied Materials & Interfaces, 2018, 10, 23311-23320.	4.0	55
75	Cryopreservation of Cell/Scaffold Tissue-Engineered Constructs. Tissue Engineering - Part C: Methods, 2012, 18, 852-858.	1.1	54
76	Use of Perfusion Bioreactors and Large Animal Models for Long Bone Tissue Engineering. Tissue Engineering - Part B: Reviews, 2014, 20, 126-146.	2.5	54
77	Injectable and Magnetic Responsive Hydrogels with Bioinspired Ordered Structures. ACS Biomaterials Science and Engineering, 2019, 5, 1392-1404.	2.6	54
78	Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 277-286.	1.6	53
79	Current strategies for osteochondral regeneration: from stem cells to pre-clinical approaches. Current Opinion in Biotechnology, 2011, 22, 726-733.	3.3	53
80	Bilayered constructs aimed at osteochondral strategies: The influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomaterialia, 2012, 8, 2795-2806.	4.1	53
81	Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures. Biofabrication, 2020, 12, 015012.	3.7	53
82	Bone turnover markers for early detection of fracture healing disturbances: A review of the scientific literature. Anais Da Academia Brasileira De Ciencias, 2015, 87, 1049-1061.	0.3	52
83	Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: Characterization and in vitro biological behavior. Dental Materials, 2013, 29, 427-436.	1.6	51
84	A Tissue Engineering Approach for Periodontal Regeneration Based on a Biodegradable Double-Layer Scaffold and Adipose-Derived Stem Cells. Tissue Engineering - Part A, 2014, 20, 2483-2492.	1.6	51
85	Biomaterials for Sequestration of Growth Factors and Modulation of Cell Behavior. Advanced Functional Materials, 2020, 30, 1909011.	7.8	51
86	Exploring the Potential of Starch/Polycaprolactone Aligned Magnetic Responsive Scaffolds for Tendon Regeneration. Advanced Healthcare Materials, 2016, 5, 213-222.	3.9	50
87	The Effect of Storage Time on Adipose-Derived Stem Cell Recovery from Human Lipoaspirates. Cells Tissues Organs, 2011, 194, 494-500.	1.3	48
88	Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine. Journal of Supercritical Fluids, 2013, 79, 177-185.	1.6	48
89	Layer-by-layer assembled cell instructive nanocoatings containing platelet lysate. Biomaterials, 2015, 48, 56-65.	5.7	48
90	Xenofree Enzymatic Products for the Isolation of Human Adipose-Derived Stromal/Stem Cells. Tissue Engineering - Part C: Methods, 2013, 19, 473-478.	1.1	47

#	Article	IF	CITATIONS
91	Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow. Biofabrication, 2014, 6, 035006.	3.7	47
92	Enthesis Tissue Engineering: Biological Requirements Meet at the Interface. Tissue Engineering - Part B: Reviews, 2019, 25, 330-356.	2.5	47
93	Injectable hyaluronic acid and platelet lysate-derived granular hydrogels for biomedical applications. Acta Biomaterialia, 2021, 119, 101-113.	4.1	47
94	Undifferentiated human adiposeâ€derived stromal/stem cells loaded onto wetâ€spun starch–polycaprolactone scaffolds enhance bone regeneration: Nude mice calvarial defect <i>in vivo</i> study. Journal of Biomedical Materials Research - Part A, 2014, 102, 3102-3111.	2.1	46
95	Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics. ACS Biomaterials Science and Engineering, 2017, 3, 1322-1331.	2.6	45
96	Microfabricated photocrosslinkable polyelectrolyte-complex of chitosan and methacrylated gellan gum. Journal of Materials Chemistry, 2012, 22, 17262.	6.7	44
97	Human Adipose Tissue-Derived SSEA-4 Subpopulation Multi-Differentiation Potential Towards the Endothelial and Osteogenic Lineages. Tissue Engineering - Part A, 2013, 19, 235-246.	1.6	43
98	Current approaches and future perspectives on strategies for the development of personalized tissue engineering therapies. Expert Review of Precision Medicine and Drug Development, 2016, 1, 93-108.	0.4	43
99	Effect of flow perfusion conditions in the chondrogenic differentiation of bone marrow stromal cells cultured onto starch based biodegradable scaffolds. Acta Biomaterialia, 2011, 7, 1644-1652.	4.1	42
100	The effect of differentiation stage of amniotic fluid stem cells on bone regeneration. Biomaterials, 2012, 33, 6069-6078.	5.7	42
101	Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta Biomaterialia, 2015, 19, 56-65.	4.1	42
102	Hyaluronic acid hydrogels incorporating platelet lysate enhance human pulp cell proliferation and differentiation. Journal of Materials Science: Materials in Medicine, 2018, 29, 88.	1.7	42
103	Tropoelastin-Coated Tendon Biomimetic Scaffolds Promote Stem Cell Tenogenic Commitment and Deposition of Elastin-Rich Matrix. ACS Applied Materials & Interfaces, 2019, 11, 19830-19840.	4.0	42
104	Novel method for the isolation of adipose stem cells (ASCs). Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 158-159.	1.3	41
105	Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1182-1193.	2.1	41
106	In situ functionalization of wet-spun fibre meshes for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 104-111.	1.3	40
107	Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering. ACS Applied Materials & Interfaces, 2019, 11, 47771-47784.	4.0	40
108	Three-dimensional self-assembling nanofiber matrix rejuvenates aged/degenerative human tendon stem/progenitor cells. Biomaterials, 2020, 236, 119802.	5.7	40

#	Article	IF	CITATIONS
109	Amniotic Fluid-Derived Stem Cells as a Cell Source for Bone Tissue Engineering. Tissue Engineering - Part A, 2012, 18, 2518-2527.	1.6	39
110	Functionalized Microparticles Producing Scaffolds in Combination with Cells. Advanced Functional Materials, 2014, 24, 1391-1400.	7.8	39
111	Tissue-engineered constructs based on SPCL scaffolds cultured with goat marrow cells: functionality in femoral defects. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 41-49.	1.3	38
112	Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications. Tissue Engineering - Part B: Reviews, 2017, 23, 27-43.	2.5	37
113	A Physiology-Inspired Multifactorial Toolbox in Soft-to-Hard Musculoskeletal Interface Tissue Engineering. Trends in Biotechnology, 2020, 38, 83-98.	4.9	36
114	Surface-modified 3D starch-based scaffold for improved endothelialization for bone tissue engineering. Journal of Materials Chemistry, 2009, 19, 4091.	6.7	35
115	Human adipose tissueâ€derived tenomodulin positive subpopulation of stem cells: A promising source of tendon progenitor cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 762-774.	1.3	35
116	Expression, purification and osteogenic bioactivity of recombinant human BMP-4, -9, -10, -11 and -14. Protein Expression and Purification, 2009, 63, 89-94.	0.6	34
117	Platelet Lysate-Loaded Photocrosslinkable Hyaluronic Acid Hydrogels for Periodontal Endogenous Regenerative Technology. ACS Biomaterials Science and Engineering, 2017, 3, 1359-1369.	2.6	34
118	Triggering the activation of Activin A type II receptor in human adipose stem cells towards tenogenic commitment using mechanomagnetic stimulation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1149-1159.	1.7	34
119	Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior. Nanoscale, 2018, 10, 17388-17401.	2.8	34
120	Development of Inhalable Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Microparticulate System for Antituberculosis Drug Delivery. Advanced Healthcare Materials, 2018, 7, e1800124.	3.9	34
121	Cryopreservation of cell laden natural origin hydrogels for cartilage regeneration strategies. Soft Matter, 2013, 9, 875-885.	1.2	33
122	Magnetically-Responsive Hydrogels for Modulation of Chondrogenic Commitment of Human Adipose-Derived Stem Cells. Polymers, 2016, 8, 28.	2.0	33
123	Preclinical and Translational Studies in Small Ruminants (Sheep and Goat) as Models for Osteoporosis Research. Current Osteoporosis Reports, 2018, 16, 182-197.	1.5	32
124	Use of animal protein-free products for passaging adherent human adipose-derived stromal/stem cells. Cytotherapy, 2011, 13, 594-597.	0.3	31
125	A novel bidirectional continuous perfusion bioreactor for the culture of largeâ€sized bone tissueâ€engineered constructs. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1377-1386.	1.6	31
126	Biological evaluation of intervertebral disc cells in different formulations of gellan gum-based hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 265-275.	1.3	31

#	Article	IF	CITATIONS
127	Contributions and future perspectives on the use of magnetic nanoparticles as diagnostic and therapeutic tools in the field of regenerative medicine. Expert Review of Molecular Diagnostics, 2013, 13, 553-566.	1.5	30
128	Evaluation of a starchâ€based double layer scaffold for bone regeneration in a rat model. Journal of Orthopaedic Research, 2014, 32, 904-909.	1.2	30
129	Design and characterization of a biodegradable double-layer scaffold aimed at periodontal tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 392-403.	1.3	30
130	Natural Polymers in tissue engineering applications. , 2008, , 145-192.		29
131	Development of micropatterned surfaces of poly(butylene succinate) by micromolding for guided tissue engineering. Acta Biomaterialia, 2012, 8, 1490-1497.	4.1	29
132	Epitope-imprinted polymers: Design principles of synthetic binding partners for natural biomacromolecules. Science Advances, 2021, 7, eabi9884.	4.7	29
133	Platelet lysate membranes as new autologous templates for tissue engineering applications. Inflammation and Regeneration, 2014, 34, 033-044.	1.5	28
134	Platelet lysate-based pro-angiogenic nanocoatings. Acta Biomaterialia, 2016, 32, 129-137.	4.1	27
135	Cellâ€laden composite suture threads for repairing damaged tendons. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1039-1048.	1.3	25
136	Magnetic biomaterials and nano-instructive tools as mediators of tendon mechanotransduction. Nanoscale Advances, 2020, 2, 140-148.	2.2	25
137	Intrinsically Bioactive Cryogels Based on Platelet Lysate Nanocomposites for Hemostasis Applications. Biomacromolecules, 2020, 21, 3678-3692.	2.6	25
138	Engineering next-generation bioinks with nanoparticles: moving from reinforcement fillers to multifunctional nanoelements. Journal of Materials Chemistry B, 2021, 9, 5025-5038.	2.9	25
139	Development of an Injectable Calcium Phosphate/Hyaluronic Acid Microparticles System for Platelet Lysate Sustained Delivery Aiming Bone Regeneration. Macromolecular Bioscience, 2016, 16, 1662-1677.	2.1	24
140	Magnetic responsive cell-based strategies for diagnostics and therapeutics. Biomedical Materials (Bristol), 2018, 13, 054001.	1.7	24
141	Magnetic responsive materials modulate the inflammatory profile of IL-1β conditioned tendon cells. Acta Biomaterialia, 2020, 117, 235-245.	4.1	24
142	Decellularized kidney extracellular matrix bioinks recapitulate renal 3D microenvironment in vitro. Biofabrication, 2021, 13, 045006.	3.7	24
143	Development of a bioactive glass fiber reinforced starch–polycaprolactone composite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 197-203.	1.6	23
144	β-PVDF Membranes Induce Cellular Proliferation and Differentiation in Static and Dynamic Conditions. Materials Science Forum, 0, 587-588, 72-76.	0.3	23

#	Article	IF	CITATIONS
145	Dynamic Culture of Osteogenic Cells in Biomimetically Coated Poly(Caprolactone) Nanofibre Mesh Constructs. Tissue Engineering - Part A, 2010, 16, 557-563.	1.6	23
146	A novel method for the isolation of subpopulations of rat adipose stem cells with different proliferation and osteogenic differentiation potentials. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 655-664.	1.3	23
147	The effect of magnetic stimulation on the osteogenic and chondrogenic differentiation of human stem cells derived from the adipose tissue (hASCs). Journal of Magnetism and Magnetic Materials, 2015, 393, 526-536.	1.0	23
148	Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. Materials Science and Engineering C, 2018, 93, 1090-1103.	3.8	23
149	The effects of platelet lysate patches on the activity of tendon-derived cells. Acta Biomaterialia, 2018, 68, 29-40.	4.1	22
150	Electrospun Starch-Polycaprolactone Nanofiber-Based Constructs for Tissue Engineering. AIP Conference Proceedings, 2008, , .	0.3	21
151	Tendon explant cultures to study the communication between adipose stem cells and native tendon niche. Journal of Cellular Biochemistry, 2018, 119, 3653-3662.	1.2	21
152	Crosstalk between adipose stem cells and tendon cells reveals a temporal regulation of tenogenesis by matrix deposition and remodeling. Journal of Cellular Physiology, 2018, 233, 5383-5395.	2.0	21
153	Epitopeâ€Imprinted Nanoparticles as Transforming Growth Factorâ€Î²3 Sequestering Ligands to Modulate Stem Cell Fate. Advanced Functional Materials, 2021, 31, 2003934.	7.8	21
154	3D Bioprinting of Miniaturized Tissues Embedded in Selfâ€Assembled Nanoparticleâ€Based Fibrillar Platforms. Advanced Functional Materials, 2021, 31, .	7.8	21
155	Additively Manufactured Device for Dynamic Culture of Large Arrays of 3D Tissue Engineered Constructs. Advanced Healthcare Materials, 2015, 4, 864-873.	3.9	20
156	<i>In vitro</i> and <i>in vivo</i> assessment of magnetically actuated biomaterials and prospects in tendon healing. Nanomedicine, 2016, 11, 1107-1122.	1.7	20
157	Periodontal tissue engineering: current strategies and the role of platelet rich hemoderivatives. Journal of Materials Chemistry B, 2017, 5, 3617-3628.	2.9	20
158	Magnetotherapy: The quest for tendon regeneration. Journal of Cellular Physiology, 2018, 233, 6395-6405.	2.0	20
159	Toward Spinning Greener Advanced Silk Fibers by Feeding Silkworms with Nanomaterials. ACS Sustainable Chemistry and Engineering, 2020, 8, 11872-11887.	3.2	20
160	Magnetic Stimulation Drives Macrophage Polarization in Cell to–Cell Communication with IL-1β Primed Tendon Cells. International Journal of Molecular Sciences, 2020, 21, 5441.	1.8	20
161	The tendon microenvironment: Engineered in vitro models to study cellular crosstalk. Advanced Drug Delivery Reviews, 2022, 185, 114299.	6.6	19
162	Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules, 2016, 17, 1985-1997.	2.6	18

#	Article	IF	CITATIONS
163	Development and Characterization of Highly Stable Silver NanoParticles as Novel Potential Antimicrobial Agents for Wound Healing Hydrogels. International Journal of Molecular Sciences, 2022, 23, 2161.	1.8	18
164	Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, e24-e30.	1.3	17
165	Cell engineering by the internalization of bioinstructive micelles for enhanced bone regeneration. Nanomedicine, 2015, 10, 1707-1721.	1.7	17
166	Biâ€directional modulation of cellular interactions in an in vitro coâ€culture model of tendonâ€toâ€bone interface. Cell Proliferation, 2018, 51, e12493.	2.4	17
167	Development of a Novel Cell Encapsulation System Based on Natural Origin Polymers for Tissue Engineering Applications. Journal of Bioactive and Compatible Polymers, 2010, 25, 341-359.	0.8	16
168	Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: The effect of silanol groups. Acta Biomaterialia, 2014, 10, 4175-4185.	4.1	16
169	Studies of P(L/D)LA 96/4 non-woven scaffolds and fibres; properties, wettability and cell spreading before and after intrusive treatment methods. Journal of Materials Science: Materials in Medicine, 2007, 18, 1253-1261.	1.7	15
170	Osteogenic properties of starch poly(εâ€caprolactone) (SPCL) fiber meshes loaded with osteoblastâ€like cells in a rat criticalâ€sized cranial defect. Journal of Biomedical Materials Research - Part A, 2013, 101, 3059-3065.	2.1	15
171	Chondrogenic Potential of Two hASCs Subpopulations Loaded onto Gellan Gum Hydrogel Evaluated in a Nude Mice Model. Current Stem Cell Research and Therapy, 2013, 8, 357-364.	0.6	15
172	Automating the Processing Steps for Obtaining Bone Tissue-Engineered Substitutes: From Imaging Tools to Bioreactors. Tissue Engineering - Part B: Reviews, 2014, 20, 567-577.	2.5	15
173	The Role of a Platelet Lysate-Based Compartmentalized System as a Carrier of Cells and Platelet-Origin Cytokines for Periodontal Tissue Regeneration. Tissue Engineering - Part A, 2016, 22, 1164-1175.	1.6	15
174	Production and characterization of hyaluronic acid microparticles for the controlled delivery of growth factors using a spray/dehydration method. Journal of Biomaterials Applications, 2016, 31, 693-707.	1.2	15
175	Injectable Hyaluronic Acid Hydrogels Enriched with Platelet Lysate as a Cryostable Off-the-Shelf System for Cell-Based Therapies. Regenerative Engineering and Translational Medicine, 2017, 3, 53-69.	1.6	15
176	Evaluation of a platelet lysate bilayered system for periodontal regeneration in a rat intrabony threeâ€wall periodontal defect. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1277-e1288.	1.3	15
177	Exploring platelet lysate hydrogel-coated suture threads as biofunctional composite living fibers for cell delivery in tissue repair. Biomedical Materials (Bristol), 2019, 14, 034104.	1.7	15
178	Cellular Complexity at the Interface: Challenges in Enthesis Tissue Engineering. Advances in Experimental Medicine and Biology, 2019, 1144, 71-90.	0.8	15
179	Platelet-Derived Products in Veterinary Medicine: A New Trend or an Effective Therapy?. Trends in Biotechnology, 2021, 39, 225-243.	4.9	15
180	Polymer Based Scaffolds and Carriers for Bioactive Agents from Different Natural Origin Materials. Advances in Experimental Medicine and Biology, 2003, 534, 201-233.	0.8	15

#	Article	IF	CITATIONS
181	Bioengineered surgical repair of a chronic oronasal fistula in a cat using autologous platelet-rich fibrin and bone marrow with a tailored 3D printed implant. Journal of Feline Medicine and Surgery, 2018, 20, 835-843.	0.6	14
182	Human tendon-derived cell sheets created by magnetic force-based tissue engineering hold tenogenic and immunomodulatory potential. Acta Biomaterialia, 2021, 131, 236-247.	4.1	14
183	Bone Tissue Engineering Constructs Based on Starch Scaffolds and Bone Marrow Cells Cultured in a Flow Perfusion Bioreactor. Materials Science Forum, 2006, 514-516, 980-984.	0.3	13
184	Combinatorial Effect of Silicon and Calcium Release from Starch-Based Scaffolds on Osteogenic Differentiation of Human Adipose Stem Cells. ACS Biomaterials Science and Engineering, 2015, 1, 760-770.	2.6	13
185	Uncovering the effect of low-frequency static magnetic field on tendon-derived cells: from mechanosensing to tenogenesis. Scientific Reports, 2017, 7, 10948.	1.6	13
186	Biomaterials as Tendon and Ligament Substitutes: Current Developments. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 349-371.	0.7	13
187	Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 1066-1075.	2.9	13
188	Pulsed Electromagnetic Field Modulates Tendon Cells Response in ILâ€1βâ€Conditioned Environment. Journal of Orthopaedic Research, 2020, 38, 160-172.	1.2	13
189	Bioengineered 3D Living Fibers as In Vitro Human Tissue Models of Tendon Physiology and Pathology. Advanced Healthcare Materials, 2022, 11, .	3.9	13
190	Assessment of bone healing ability of calcium phosphate cements loaded with platelet lysate in rat calvarial defects. Journal of Biomaterials Applications, 2016, 31, 637-649.	1.2	12
191	Continuous Exposure to Simulated Hypergravity-Induced Changes in Proliferation, Morphology, and Gene Expression of Human Tendon Cells. Stem Cells and Development, 2018, 27, 858-869.	1.1	12
192	Remote triggering of TGF-β/Smad2/3 signaling in human adipose stem cells laden on magnetic scaffolds synergistically promotes tenogenic commitment. Acta Biomaterialia, 2020, 113, 488-500.	4.1	12
193	Development and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation rate. Acta Biomaterialia, 2021, 121, 303-315.	4.1	12
194	Comparison of the cytotoxicity of molybdenum as powder and as alloying element in a niobium–molybdenum alloy. Journal of Materials Science: Materials in Medicine, 1998, 9, 761-765.	1.7	11
195	Methodologies for Processing Biodegradable and Natural Origin Scaffolds for Bone and Cartilage Tissue-Engineering Applications. , 2004, 238, 65-76.		11
196	An automated two-phase system for hydrogel microbead production. Biofabrication, 2012, 4, 035003.	3.7	11
197	Effects of hypergravity on the angiogenic potential of endothelial cells. Journal of the Royal Society Interface, 2016, 13, 20160688.	1.5	11
198	Evaluation of bone turnover markers and serum minerals variations for predicting fracture healing versus non-union processes in adult sheep as a model for orthopedic research. Injury, 2017, 48, 1768-1775.	0.7	11

#	Article	IF	CITATIONS
199	Multifunctional Surfaces for Improving Soft Tissue Integration. Advanced Healthcare Materials, 2021, 10, e2001985.	3.9	11
200	Human Platelet Lysate-Loaded Poly(ethylene glycol) Hydrogels Induce Stem Cell Chemotaxis <i>In Vitro</i> . Biomacromolecules, 2021, 22, 3486-3496.	2.6	11
201	Therapeutic Effects of Platelet-Derived Extracellular Vesicles in a Bioengineered Tendon Disease Model. International Journal of Molecular Sciences, 2022, 23, 2948.	1.8	11
202	Serum total and bone alkaline phosphatase and tartrate-resistant acid phosphatase activities for the assessment of bone fracture healing in dogs. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2011, 63, 1007-1011.	0.1	10
203	Evaluation of tenogenic differentiation potential of selected subpopulations of human adiposeâ€derived stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2204-2217.	1.3	10
204	Interactive endothelial phenotype maintenance and osteogenic differentiation of adipose tissue stromal vascular fraction SSEA-4 ⁺ -derived cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1998-2013.	1.3	9
205	Cellulose nanocrystals of variable sulfation degrees can sequester specific platelet lysate-derived biomolecules to modulate stem cell response. Chemical Communications, 2020, 56, 6882-6885.	2.2	9
206	Cell-Based Approaches for Tendon Regeneration. , 2015, , 187-203.		9
207	Membranes for periodontal tissues regeneration. Ciência & Tecnologia Dos Materiais, 2014, 26, 108-117.	0.5	8
208	Metabolic Disease Epidemics: Emerging Challenges in Regenerative Medicine. Trends in Endocrinology and Metabolism, 2019, 30, 147-149.	3.1	8
209	In vitro temporal HIFâ€mediated deposition of osteochondrogenic matrix governed by hypoxia and osteogenic factors synergy. Journal of Cellular Physiology, 2021, 236, 3991-4007.	2.0	8
210	Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals. Carbohydrate Polymers, 2022, 292, 119638.	5.1	8
211	Micro- and Nanotechnology in Tissue Engineering. , 2011, , 3-29.		7
212	Periodontal Tissue Engineering Strategies Based on Nonoral Stem Cells. Anatomical Record, 2014, 297, 6-15.	0.8	7
213	Gravity, Tissue Engineering, and the Missing Link. Trends in Biotechnology, 2018, 36, 343-347.	4.9	7
214	Magnetic triggers in biomedical applications – prospects for contact free cell sensing and guidance. Journal of Materials Chemistry B, 2021, 9, 1259-1271.	2.9	7
215	Tartrate-resistant acid phosphatase as a biomarker of bone turnover in dog. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2011, 63, 40-45.	0.1	7
216	Evaluation of Injectable Hyaluronic Acid-Based Hydrogels for Endodontic Tissue Regeneration. Materials, 2021, 14, 7325.	1.3	7

#	Article	IF	CITATIONS
217	Assessing the repair of critical size bone defects performed in a goat tibia model using tissue-engineered constructs cultured in a bidirectional flow perfusion bioreactor. Journal of Biomaterials Applications, 2014, 29, 172-185.	1.2	6
218	Serum total and bone alkaline phosphatase levels and their correlation with serum minerals over the lifespan of sheep. Acta Veterinaria Hungarica, 2014, 62, 205-214.	0.2	6
219	Platelet-rich Blood Derivatives for Tendon Regeneration. Journal of the American Academy of Orthopaedic Surgeons, The, 2020, 28, e202-e205.	1.1	6
220	Effect of Sonic Agitation of a Binary Mixture of Solvents on Filling Remnants Removal as an Alternative to Apical Enlargement—A Micro-CT Study. Journal of Clinical Medicine, 2020, 9, 2465.	1.0	6
221	Supplementary solvent irrigation efficacy on filling remnants removal comparing XP-endo Finisher R vs IrriSafe. Scientific Reports, 2021, 11, 12659.	1.6	6
222	Controlling the fate of regenerative cells with engineered platelet-derived extracellular vesicles. Nanoscale, 2022, 14, 6543-6556.	2.8	6
223	Short-term variability in biomarkers of bone metabolism in sheep. Lab Animal, 2014, 43, 21-26.	0.2	5
224	Fabrication of Hierarchical and Biomimetic Fibrous Structures to Support the Regeneration of Tendon Tissues. , 2015, , 259-280.		5
225	A Radially Organized Multipatterned Device as a Diagnostic Tool for the Screening of Topographies in Tissue Engineering Biomaterials. Tissue Engineering - Part C: Methods, 2016, 22, 914-922.	1.1	5
226	Supercritical Fluid Technology as a Tool to Prepare Gradient Multifunctional Architectures Towards Regeneration of Osteochondral Injuries. Advances in Experimental Medicine and Biology, 2018, 1058, 265-278.	0.8	4
227	Texturing Hierarchical Tissues by Gradient Assembling of Microengineered Platelet‣ysates Activated Fibers. Advanced Healthcare Materials, 2021, , 2102076.	3.9	4
228	Biomaterials in Preclinical Approaches for Engineering Skeletal Tissues. , 2015, , 127-139.		3
229	The impact of cryopreservation in signature markers and immunomodulatory profile of tendon and ligament derived cells. Journal of Cellular Physiology, 2022, 237, 675-686.	2.0	3
230	CHAPTER 18. Magnetic-Responsive Materials for Tissue Engineering and Regenerative Medicine. RSC Smart Materials, 2016, , 491-519.	0.1	3
231	Biomimetic Coating of Starch Based Polymeric Foams Produced by a Calcium Silicate Based Methodology. Key Engineering Materials, 2003, 240-242, 101-104.	0.4	2
232	3D Functional scaffolds for dental tissue engineering. , 2018, , 423-450.		2
233	Tuneable cellulose nanocrystal and tropoelastin-laden hyaluronic acid hydrogels. Journal of Biomaterials Applications, 2019, 34, 560-572.	1.2	2
234	Hyaluronic Acid Oligomer Immobilization as an Angiogenic Trigger for the Neovascularization of TE Constructs. ACS Applied Bio Materials, 2021, 4, 6023-6035.	2.3	2

#	Article	IF	CITATIONS
235	Evaluation of hematology, general serum biochemistry, bone turnover markers and bone marrow cytology in a glucocorticoid treated ovariectomized sheep model for osteoporosis research. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200435.	0.3	2
236	Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications. AIP Conference Proceedings, 2008, , .	0.3	1
237	Nanomaterials for engineering vascularized tissues. , 2013, , 229-246.		1
238	Bioengineered Strategies for Tendon Regeneration. , 2016, , 275-293.		1
239	Hydrogels in Bone Tissue Engineering: A Multi-Parametric Approach. , 2016, , 165-197.		1
240	Bioinspired materials and tissue engineering approaches applied to the regeneration of musculoskeletal tissues. , 2020, , 73-105.		1
241	Starch-polycaprolactone based scaffolds in bone and cartilage tissue engineering approaches. , 2008, , 337-356.		0
242	In vitro evaluation of osteoconductive starch based scaffolds under dynamic conditions. , 2011, , .		0
243	Future Directions: What the Future Holds for TERM. , 2019, , 1-1.		0
244	Multiscale Multifactorial Approaches for Engineering Tendon Substitutes. , 2020, , 1-24.		0
245	Natural Materials. , 2020, , 361-375.		0
246	Tissue engineering strategies for the treatment of skeletal maxillofacial defects resulting from neoplasms resections. , 2020, , 697-730.		0
247	Multiscale Multifactorial Approaches for Engineering Tendon Substitutes. Reference Series in Biomedical Engineering, 2021, , 507-530.	0.1	0
248	Adipose Tissue-Derived MSCs: Moving to the Clinic. , 2013, , 663-681.		0
249	Bone Tissue Engineering: Injectable Polymeric Scaffolds. , 0, , 1164-1170.		0
250	Tissue Engineering: Fiber Bonding and Particle Aggregation. , 0, , 7986-7995.		0