Martino Rimoldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3370637/publications.pdf

Version: 2024-02-01

19	857 citations	623734 14 h-index	794594 19 g-index
papers	Citations	II-IIIdex	g-index
19 all docs	19 docs citations	19 times ranked	1505 citing authors

#	Article	IF	CITATIONS
1	Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 2017, 7, 997-1014.	11.2	288
2	A metal–organic framework immobilised iridium pincer complex. Chemical Science, 2016, 7, 4980-4984.	7.4	78
3	Pushing the Limits on Metal–Organic Frameworks as a Catalyst Support: NU-1000 Supported Tungsten Catalysts for <i>o</i> -Xylene Isomerization and Disproportionation. Journal of the American Chemical Society, 2018, 140, 8535-8543.	13.7	73
4	Anisotropic Redox Conductivity within a Metal–Organic Framework Material. Journal of the American Chemical Society, 2019, 141, 17696-17702.	13.7	71
5	Atomic Layer Deposition in a Metal–Organic Framework: Synthesis, Characterization, and Performance of a Solid Acid. Chemistry of Materials, 2017, 29, 1058-1068.	6.7	45
6	Mapping Palladium Reduction by Carbon Monoxide in a Catalytically Relevant System. A Novel Palladium(I) Dimer. Organometallics, 2011, 30, 2385-2393.	2.3	36
7	Unexpected isomerism in â€∞[Pd(2,9-dimethylphenanthroline)X2]―(X = Cl, Br, I) complexes: a neutral and an ionic form exist. Dalton Transactions, 2012, 41, 3648.	3.3	36
8	Ammonia Capture within Zirconium Metal–Organic Frameworks: Reversible and Irreversible Uptake. ACS Applied Materials & Diterfaces, 2021, 13, 20081-20093.	8.0	36
9	Tuning the properties of metal–organic framework nodes as supports of single-site iridium catalysts: node modification by atomic layer deposition of aluminium. Faraday Discussions, 2017, 201, 195-206.	3.2	30
10	Vapor-Phase Fabrication and Condensed-Phase Application of a MOF-Node-Supported Iron Thiolate Photocatalyst for Nitrate Conversion to Ammonium. ACS Applied Energy Materials, 2019, 2, 8695-8700.	5.1	29
11	Fabrication of Thin Films of α-Fe ₂ O ₃ via Atomic Layer Deposition Using Iron Bisamidinate and Water under Mild Growth Conditions. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16138-16142.	8.0	27
12	Atomic Layer Deposition of Rhenium–Aluminum Oxide Thin Films and ReO _{<i>x</i>} Incorporation in a Metal–Organic Framework. ACS Applied Materials & Therfaces, 2017, 9, 35067-35074.	8.0	24
13	Stabilizing a Vanadium Oxide Catalyst by Supporting on a Metal–Organic Framework. ChemCatChem, 2018, 10, 1772-1777.	3.7	21
14	Large Spinâ€toâ€Charge Conversion at Room Temperature in Extended Epitaxial Sb ₂ Te ₃ Topological Insulator Chemically Grown on Silicon. Advanced Functional Materials, 2022, 32, 2109361.	14.9	19
15	Epitaxial and large area Sb ₂ Te ₃ thin films on silicon by MOCVD. RSC Advances, 2020, 10, 19936-19942.	3.6	15
16	Catalytically Active Silicon Oxide Nanoclusters Stabilized in a Metal–Organic Framework. Chemistry - A European Journal, 2017, 23, 8532-8536.	3.3	14
17	Effect of Substrates and Thermal Treatments on Metalorganic Chemical Vapor Deposition-Grown Sb ₂ Te ₃ Thin Films. Crystal Growth and Design, 2021, 21, 5135-5144.	3.0	8
18	Phosphonates Meet Metalâ^'Organic Frameworks: Towards CO 2 Adsorption. Israel Journal of Chemistry, 2018, 58, 1164-1170.	2.3	4

#	Article	IF	CITATIONS
19	Reaction of arylhydroxylamines with [Pd(Neoc)(NO3)2] (Neoc = neocuproine). Non-innocent behavior of the nitrate anion. Inorganica Chimica Acta, 2018, 470, 284-289.	2.4	3