Philip J O'connell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3370597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biopsy transcriptome expression profiling to identify kidney transplants at risk of chronic injury: a multicentre, prospective study. Lancet, The, 2016, 388, 983-993.	13.7	148
2	Proinsulin-Specific, HLA-DQ8, and HLA-DQ8-Transdimer–Restricted CD4+ T Cells Infiltrate Islets in Type 1 Diabetes. Diabetes, 2015, 64, 172-182.	0.6	137
3	The causes, significance and consequences of inflammatory fibrosis in kidney transplantation: The Banff i-IFTA lesion. American Journal of Transplantation, 2018, 18, 364-376.	4.7	113
4	Executive summary. Xenotransplantation, 2009, 16, 196-202.	2.8	94
5	Human Islets Express a Marked Proinflammatory Molecular Signature Prior to Transplantation. Cell Transplantation, 2012, 21, 2063-2078.	2.5	85
6	Clinical islet transplantation in type 1 diabetes mellitus: results of Australia's first trial. Medical Journal of Australia, 2006, 184, 221-225.	1.7	69
7	A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection. Journal of the American Society of Nephrology: JASN, 2019, 30, 1481-1494.	6.1	67
8	Adoptive Transfer With In Vitro Expanded Human Regulatory T Cells Protects Against Porcine Islet Xenograft Rejection via Interleukin-10 in Humanized Mice. Diabetes, 2012, 61, 1180-1191.	0.6	65
9	Islet Transplantation Provides Superior Glycemic Control With Less Hypoglycemia Compared With Continuous Subcutaneous Insulin Infusion or Multiple Daily Insulin Injections. Transplantation, 2017, 101, 1268-1275.	1.0	51
10	Regulatory T cells in kidney disease and transplantation. Kidney International, 2016, 90, 502-514.	5.2	48
11	Clearance of BK Virus Nephropathy by Combination Antiviral Therapy With Intravenous Immunoglobulin. Transplantation Direct, 2017, 3, e142.	1.6	48
12	A Preexistent Hypoxic Gene Signature Predicts Impaired Islet Graft Function and Glucose Homeostasis. Cell Transplantation, 2013, 22, 2147-2159.	2.5	47
13	Transplantation sites for human and murine islets. Diabetologia, 2017, 60, 1961-1971.	6.3	47
14	CD47 Promotes Age-Associated Deterioration in Angiogenesis, Blood Flow and Glucose Homeostasis. Cells, 2020, 9, 1695.	4.1	34
15	Recipient APOL1 risk alleles associate with death-censored renal allograft survival and rejection episodes. Journal of Clinical Investigation, 2021, 131, .	8.2	33
16	Transplantation of Xenogeneic Islets: Are We There Yet?. Current Diabetes Reports, 2013, 13, 687-694.	4.2	31
17	The Use of Genomics and Pathway Analysis in Our Understanding and Prediction of Clinical Renal Transplant Injury. Transplantation, 2016, 100, 1405-1414.	1.0	27
18	A20 as an immune tolerance factor can determine islet transplant outcomes. JCI Insight, 2019, 4, .	5.0	27

Philip J O'CONNELL

#	Article	IF	CITATIONS
19	Low-Dose Interleukin-2 Combined With Rapamycin Led to an Expansion of CD4+CD25+FOXP3+ Regulatory T Cells and Prolonged Human Islet Allograft Survival in Humanized Mice. Diabetes, 2020, 69, 1735-1748.	0.6	26
20	Pretransplant transcriptomic signature in peripheral blood predicts early acute rejection. JCI Insight, 2019, 4, .	5.0	26
21	Genetic and functional evaluation of the level of inbreeding of the Westran pig: a herd with potential for use in xenotransplantation. Xenotransplantation, 2005, 12, 308-315.	2.8	25
22	Preclinical screening for acute toxicity of therapeutic monoclonal antibodies in a hu-SCID model. Clinical and Translational Immunology, 2014, 3, e29.	3.8	25
23	In Vivo Costimulation Blockade-Induced Regulatory T Cells Demonstrate Dominant and Specific Tolerance to Porcine Islet Xenografts. Transplantation, 2017, 101, 1587-1599.	1.0	23
24	First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—Chapter 6: patient selection for pilot clinical trials of islet xenotransplantation. Xenotransplantation, 2016, 23, 60-76.	2.8	21
25	Standardisation of flow cytometry for whole blood immunophenotyping of islet transplant and transplant clinical trial recipients. PLoS ONE, 2019, 14, e0217163.	2.5	21
26	Chapter 6: Patient selection for pilot clinical trials of islet xenotransplantation. Xenotransplantation, 2009, 16, 249-254.	2.8	20
27	Renal transplantation: better fat than thin. Journal of Surgical Research, 2015, 194, 644-652.	1.6	19
28	Selective rejection of porcine islet xenografts by macrophages. Xenotransplantation, 2008, 15, 307-312.	2.8	17
29	Foxp3 regulates human natural CD4+CD25+ regulatory Tâ€cellâ€mediated suppression of xenogeneic response. Xenotransplantation, 2010, 17, 121-130.	2.8	17
30	SHROOM3-FYN Interaction Regulates Nephrin Phosphorylation and Affects Albuminuria in Allografts. Journal of the American Society of Nephrology: JASN, 2018, 29, 2641-2657.	6.1	17
31	Machine learning workflows identify a microRNA signature of insulin transcription in human tissues. IScience, 2021, 24, 102379.	4.1	17
32	The long noncoding RNA MALAT1 predicts human islet isolation quality. JCI Insight, 2019, 4, .	5.0	17
33	Role of regulatory T cells in xenotransplantation. Current Opinion in Organ Transplantation, 2010, 15, 224-229.	1.6	16
34	Relative survival and quality of life benefits of pancreas–kidney transplantation, deceased kidney transplantation and dialysis in type 1 diabetes mellitus—a probabilistic simulation model. Transplant International, 2020, 33, 1393-1404.	1.6	15
35	Antigen Specific Regulatory T Cells in Kidney Transplantation and Other Tolerance Settings. Frontiers in Immunology, 2021, 12, 717594.	4.8	15
36	Induction of Allogeneic Islet Tolerance in a Large-Animal Model. Cell Transplantation, 2000, 9, 877-887.	2.5	14

Philip J O'CONNELL

#	Article	IF	CITATIONS
37	Characterizing the Mechanistic Pathways of the Instant Blood-Mediated Inflammatory Reaction in Xenogeneic Neonatal Islet Cell Transplantation. Transplantation Direct, 2016, 2, e77.	1.6	14
38	The role of kidney transplantation as a component of integrated care for chronic kidney disease. Kidney International Supplements, 2020, 10, e78-e85.	14.2	13
39	Shortâ€ŧerm suppression of the xenoâ€ɨmmune response with mCTLA4â€Fc treatment. Xenotransplantation, 1997, 4, 222-227.	2.8	12
40	Transplantation sites for porcine islets. Diabetologia, 2017, 60, 1972-1976.	6.3	11
41	Mortality in People With Type 1 Diabetes, Severe Hypoglycemia, and Impaired Awareness of Hypoglycemia Referred for Islet Transplantation. Transplantation Direct, 2018, 4, e401.	1.6	11
42	The potential role of xenogeneic antigenâ€presenting cells in Tâ€cell coâ€stimulation. Xenotransplantation, 1996, 3, 141-148.	2.8	10
43	Inducible nitric oxide synthetase is expressed in adult but not fetal pig pancreatic islets. Xenotransplantation, 2000, 7, 197-205.	2.8	10
44	Successful obstetric outcome after simultaneous pancreas and kidney transplantation. Medical Journal of Australia, 1999, 170, 368-370.	1.7	10
45	Key driver genes as potential therapeutic targets in renal allograft rejection. JCI Insight, 2020, 5, .	5.0	9
46	Intrathymic inoculation of donor antigen: an ineffective strategy for prolonging xenograft survival. Xenotransplantation, 1999, 6, 147-154.	2.8	7
47	Postâ€ŧransplant cyclophosphamide limits reactive donor T cells and delays the development of graftâ€versusâ€host disease in a humanized mouse model. Immunology, 2021, 164, 332-347.	4.4	7
48	The rationale and practical issues for the maintenance of clean herds for clinical islet xenotransplantation. Xenotransplantation, 2008, 15, 91-92.	2.8	4
49	Biopsy transcriptome expression profiling: proper validation is key $\hat{a} \in Authors'$ reply. Lancet, The, 2017, 389, 601.	13.7	2
50	Successful Islet Outcomes Using Australia-Wide Donors: A National Centre Experience. Metabolites, 2021, 11, 360.	2.9	2