## Meraj Mohammad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3370273/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A New Structure of High Voltage Gain SEPIC Converter for Renewable Energy Applications. IEEE Access, 2019, 7, 89857-89868.                                                                                                                       | 2.6 | 99        |
| 2  | High Gain Transformer-Less Double-Duty-Triple-Mode DC/DC Converter for DC Microgrid. IEEE Access, 2019, 7, 36353-36370.                                                                                                                          | 2.6 | 97        |
| 3  | A New Single Phase Single Switched-Capacitor Based Nine-Level Boost Inverter Topology With Reduced Switch Count and Voltage Stress. IEEE Access, 2019, 7, 174178-174188.                                                                         | 2.6 | 90        |
| 4  | A Novel Modified Switched Inductor Boost Converter With Reduced Switch Voltage Stress. IEEE<br>Transactions on Industrial Electronics, 2021, 68, 1275-1289.                                                                                      | 5.2 | 86        |
| 5  | Evaluation of Level-Shifted and Phase-Shifted PWM Schemes for Seven Level Single-Phase Packed U Cell<br>Inverter. CPSS Transactions on Power Electronics and Applications, 2018, 3, 232-242.                                                     | 2.9 | 59        |
| 6  | Common Mode Voltage Reduction in a Single-Phase Quasi Z-Source Inverter for Transformerless<br>Grid-Connected Solar PV Applications. IEEE Journal of Emerging and Selected Topics in Power<br>Electronics, 2019, 7, 1352-1363.                   | 3.7 | 56        |
| 7  | Interleaved Multilevel Boost Converter With Minimal Voltage Multiplier Components for<br>High-Voltage Step-Up Applications. IEEE Transactions on Power Electronics, 2020, 35, 12816-12833.                                                       | 5.4 | 46        |
| 8  | Closed-Loop Control and Boundary for CCM and DCM of Nonisolated Inverting <i>N</i> × Multilevel<br>Boost Converter for High-Voltage Step-Up Applications. IEEE Transactions on Industrial Electronics,<br>2020, 67, 2863-2874.                   | 5.2 | 44        |
| 9  | A Comprehensive Review of Power Flow Controllers in Interconnected Power System Networks. IEEE Access, 2020, 8, 18036-18063.                                                                                                                     | 2.6 | 43        |
| 10 | A New Triple-Switch-Triple-Mode High Step-Up Converter With Wide Range of Duty Cycle for DC Microgrid Applications. IEEE Transactions on Industry Applications, 2019, 55, 7425-7441.                                                             | 3.3 | 39        |
| 11 | Nonisolated Symmetrical Interleaved Multilevel Boost Converter With Reduction in Voltage Rating of Capacitors for High-Voltage Microgrid Applications. IEEE Transactions on Industry Applications, 2019, 55, 7410-7424.                          | 3.3 | 35        |
| 12 | DC-Transformer Modelling, Analysis and Comparison of the Experimental Investigation of a<br>Non-Inverting and Non-Isolated Nx Multilevel Boost Converter (Nx MBC) for Low to High DC Voltage<br>Applications. IEEE Access, 2018, 6, 70935-70951. | 2.6 | 34        |
| 13 | New triâ€switching state nonâ€isolated high gain DC–DC boost converter for microgrid application. IET<br>Power Electronics, 2019, 12, 2741-2750.                                                                                                 | 1.5 | 33        |
| 14 | Novel Level Shifted PWM Technique for Unequal and Equal Power Sharing in Quasi Z-Source Cascaded<br>Multilevel Inverter for PV Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics,<br>2021, 9, 937-948.                  | 3.7 | 32        |
| 15 | A New Variable Frequency Control of 49-Level Cascaded Packed U-Cell Voltage Source Inverter. IEEE<br>Transactions on Industry Applications, 2019, 55, 7537-7548.                                                                                 | 3.3 | 30        |
| 16 | Experimental Investigation and Comparative Evaluation of Standard Level Shifted Multi-Carrier<br>Modulation Schemes With a Constraint GA Based SHE Techniques for a Seven-Level PUC Inverter. IEEE<br>Access, 2019, 7, 100605-100617.            | 2.6 | 29        |
| 17 | Design and Implementation of Cascaded Multilevel qZSI Powered Single-Phase Induction Motor for<br>Isolated Grid Water Pump Application. IEEE Transactions on Industry Applications, 2020, 56, 1907-1917.                                         | 3.3 | 29        |
| 18 | High Gain Switched-Inductor-Double-Leg Converter With Wide Duty Range for DC Microgrid. IEEE<br>Transactions on Industrial Electronics. 2021, 68, 9561-9573.                                                                                     | 5.2 | 26        |

Meraj Mohammad

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | High stepâ€up single switch quadratic modified SEPIC converter for DC microgrid applications. IET<br>Power Electronics, 2020, 13, 3717-3726.                                                                  | 1.5 | 23        |
| 20 | Comparative analysis of carrier schemes for PWM in multilevel PUC inverter for PV applications. , 2016, , .                                                                                                   |     | 21        |
| 21 | Novel Level-Shifted PWM Technique for Equal Power Sharing Among Quasi-Z-Source Modules in<br>Cascaded Multilevel Inverter. IEEE Transactions on Power Electronics, 2021, 36, 4766-4777.                       | 5.4 | 21        |
| 22 | Modulation With Metaheuristic Approach for Cascaded-MPUC49 Asymmetrical Inverter With Boosted Output. IEEE Access, 2020, 8, 96867-96877.                                                                      | 2.6 | 20        |
| 23 | High gain threeâ€state switching hybrid boost converter for DC microgrid applications. IET Power Electronics, 2019, 12, 3656-3667.                                                                            | 1.5 | 19        |
| 24 | Design of a proportional resonant controller for packed U cell 5 level inverter for grid-connected applications. , 2016, , .                                                                                  |     | 17        |
| 25 | Modified multilevel buck–boost converter with equal voltage acrosseach capacitor: analysis and experimental investigations. IET Power Electronics, 2019, 12, 3318-3330.                                       | 1.5 | 17        |
| 26 | Novel voltage balancing algorithm for singleâ€phase cascaded multilevel inverter for postâ€module<br>failure operation in solar photovoltaic applications. IET Renewable Power Generation, 2019, 13, 427-437. | 1.7 | 16        |
| 27 | Transformer-Less Boost Converter With Reduced Voltage Stress for High Voltage Step-Up<br>Applications. IEEE Transactions on Industrial Electronics, 2022, 69, 1498-1508.                                      | 5.2 | 16        |
| 28 | Non-Isolated DC–DC Power Converter With High Gain and Inverting Capability. IEEE Access, 2021, 9,<br>62084-62092.                                                                                             | 2.6 | 15        |
| 29 | A Hybrid Multilevel Inverter Scheme for Nine-Phase PPMIM Drive by Using Three-Phase Five-Leg<br>Inverters. IEEE Transactions on Industrial Electronics, 2021, 68, 1895-1904.                                  | 5.2 | 13        |
| 30 | High Brightness and High Voltage Dimmable LED Driver for Advanced Lighting System. IEEE Access, 2019,<br>7, 95643-95652.                                                                                      | 2.6 | 12        |
| 31 | Single-Phase Z <sub>AC</sub> -Source AC–AC Converter With High Buck and Boost Voltage Conversion<br>Capability. IEEE Transactions on Industrial Electronics, 2020, 67, 9251-9259.                             | 5.2 | 11        |
| 32 | A Single DC Source-Based Three-Level Inverter Topology for a Four-Pole Open-End Winding Nine-Phase<br>PPMIM Drives. IEEE Transactions on Industrial Electronics, 2021, 68, 2750-2759.                         | 5.2 | 11        |
| 33 | Novel Level-Shifted PWM Technique for Cascaded Multilevel Quasi-Impedance Source Inverter. IEEE<br>Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 5918-5928.                          | 3.7 | 11        |
| 34 | Improved power quality operation of symmetrical and asymmetrical multilevel inverter using invasive weed optimization technique. Energy Reports, 2022, 8, 3323-3336.                                          | 2.5 | 10        |
| 35 | Failure mode analysis for single-phase Multi-level qZSI interfacing PV system to utility grid. , 2017, ,                                                                                                      |     | 9         |
| 36 | Modelling, analysis, and implementation of a switchedâ€inductor based DC/DC converter with reduced switch current stress. IET Power Electronics, 2021, 14, 1504-1514.                                         | 1.5 | 9         |

Meraj Mohammad

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A new highâ€level boost inverter topology with reduced device count. International Journal of Circuit<br>Theory and Applications, 2022, 50, 2777-2792.                                      | 1.3 | 8         |
| 38 | A hybrid active and reactive power control with Quasi Z-source inverter in single-phase grid-connected PV systems. , 2016, , .                                                              |     | 7         |
| 39 | Thyristor based SVC and multilevel qZSI for Active and Reactive power management in solar PV system. , 2017, , .                                                                            |     | 7         |
| 40 | A high efficiency and high reliability single-phase modified quasi Z-Source inverter for non-isolated grid-connected applications. , 2015, , .                                              |     | 6         |
| 41 | L-L Converter for Fuel Cell Vehicular Power Train Applications: Hardware Implementation of Primary<br>Member of X-Y Converter Family. , 2018, , .                                           |     | 6         |
| 42 | Hardware Implementation of a New Single Input Double Output L-L Converter for High Voltage<br>Auxiliary Loads in Fuel-cell Vehicles. , 2019, , .                                            |     | 5         |
| 43 | Optimized FPGA Implementation of PWAM-Based Control of Three—Phase Nine—Level Quasi Impedance<br>Source Inverter. IEEE Access, 2019, 7, 137279-137290.                                      | 2.6 | 5         |
| 44 | Cascaded multilevel qZSI powered single-phase induction motor for water pump application. , 2017, , .                                                                                       |     | 4         |
| 45 | Dynamic Modeling and Control of Pole-Phase Modulation-Based Multiphase Induction Motor Drives.<br>IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 3383-3394.   | 3.7 | 4         |
| 46 | E <sup>K</sup> Î, multilevel inverter – a minimal switch novel configuration for higher number of<br>output voltage levels. IET Power Electronics, 2020, 13, 2804-2815.                     | 1.5 | 4         |
| 47 | Smart Grid Cybersecurity: Standards and Technical Countermeasures. , 2018, , .                                                                                                              |     | 3         |
| 48 | New DC-DC Multilevel Configurations of 2L-Y Boost Converters with High Voltage Conversion Ratio for Renewable Energy Applications. , 2019, , .                                              |     | 3         |
| 49 | Fault tolerant singleâ€phase capacitor start capacitor run induction motor powered with cascaded multilevel quasi impedance source inverter. Journal of Engineering, 2019, 2019, 4036-4040. | 0.6 | 3         |
| 50 | A New Type of Boost Converter with Dual Duty and High Gain for DC Microgrid Applications. , 2022, , .                                                                                       |     | 3         |
| 51 | Novel Control Algorithm for V/f Control of PWAM Based Induction Motor Drive. , 2018, , .                                                                                                    |     | 2         |
| 52 | New High Gain 2LC-Y Multilevel-Boost-Converter (2LC-Y MBC) Topologies for Renewable Energy<br>Conversion: Members of X-Y Converter Family. , 2019, , .                                      |     | 2         |
| 53 | Quasi Z Source Inverter Fed V/f Controlled Five Phase Induction Motor Drive Powered. , 2019, , .                                                                                            |     | 2         |
| 54 | Dynamic mitigation of EV charging stations impact on active Distribution Networks with Distributed BESSs. , 2018, , .                                                                       |     | 1         |

| #  | ARTICLE                                                                                                                           | IF | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 55 | Novel PWM Technique for Quasi Switched Boost Converter for the Nano-grid Applications. , 2019, , .                                |    | 1         |
| 56 | Switched Inductor Quazi Switched boost Converter for Nano $\hat{a} \in \hat{~}$ Grid Applications. , 2019, , .                    |    | 1         |
| 57 | Virtual Flux Oriented Sensorless Direct Power Control of QZS Inverter Connected to Grid for Solar<br>PV Applications. , 2019, , . |    | 0         |