Xiao-Bing Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3370219/publications.pdf Version: 2024-02-01

XIAO-RING GAO

#	Article	IF	CITATIONS
1	The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 322-327.	3.3	3,579
2	Leptin Receptor Signaling in Midbrain Dopamine Neurons Regulates Feeding. Neuron, 2006, 51, 801-810.	3.8	1,051
3	Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. Journal of Clinical Investigation, 2006, 116, 3229-3239.	3.9	836
4	UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature, 2008, 454, 846-851.	13.7	633
5	A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure. Cell, 2009, 138, 976-989.	13.5	565
6	Presynaptic and Postsynaptic Actions and Modulation of Neuroendocrine Neurons by a New Hypothalamic Peptide, Hypocretin/Orexin. Journal of Neuroscience, 1998, 18, 7962-7971.	1.7	524
7	A Neural Circuit for Gut-Induced Reward. Cell, 2018, 175, 665-678.e23.	13.5	436
8	Hypocretin/Orexin Excites Hypocretin Neurons via a Local Glutamate Neuron—A Potential Mechanism for Orchestrating the Hypothalamic Arousal System. Neuron, 2002, 36, 1169-1181.	3.8	429
9	Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nature Medicine, 2007, 13, 89-94.	15.2	373
10	Maternal and Offspring Pools of Osteocalcin Influence Brain Development and Functions. Cell, 2013, 155, 228-241.	13.5	348
11	Nicotine Decreases Food Intake Through Activation of POMC Neurons. Science, 2011, 332, 1330-1332.	6.0	337
12	Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature, 2015, 519, 45-50.	13.7	336
13	A Central Thermogenic-like Mechanism in Feeding Regulation: An Interplay between Arcuate Nucleus T3 and UCP2. Cell Metabolism, 2007, 5, 21-33.	7.2	264
14	Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neuroepithelial Stem Cells and Radial Glia. Cell Reports, 2016, 16, 2576-2592.	2.9	253
15	Ghrelin Promotes and Protects Nigrostriatal Dopamine Function via a UCP2-Dependent Mitochondrial Mechanism. Journal of Neuroscience, 2009, 29, 14057-14065.	1.7	245
16	Peroxisome proliferation–associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nature Medicine, 2011, 17, 1121-1127.	15.2	239
17	Direct Evidence for Wake-Related Increases and Sleep-Related Decreases in Synaptic Strength in Rodent Cortex. Journal of Neuroscience, 2010, 30, 8671-8675.	1.7	197
18	Agrp Neurons Mediate Sirt1's Action on the Melanocortin System and Energy Balance: Roles for Sirt1 in Neuronal Firing and Synaptic Plasticity. Journal of Neuroscience, 2010, 30, 11815-11825.	1.7	194

XIAO-BING GAO

#	Article	IF	CITATIONS
19	Gpr158 mediates osteocalcin's regulation of cognition. Journal of Experimental Medicine, 2017, 214, 2859-2873.	4.2	194
20	Input organization and plasticity of hypocretin neurons. Cell Metabolism, 2005, 1, 279-286.	7.2	185
21	Adenosine Inhibits Activity of Hypocretin/Orexin Neurons by the A1 Receptor in the Lateral Hypothalamus: A Possible Sleep-Promoting Effect. Journal of Neurophysiology, 2007, 97, 837-848.	0.9	174
22	Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. Journal of Physiology, 2001, 533, 237-252.	1.3	166
23	Early-Life Experience Reduces Excitation to Stress-Responsive Hypothalamic Neurons and Reprograms the Expression of Corticotropin-Releasing Hormone. Journal of Neuroscience, 2010, 30, 703-713.	1.7	150
24	Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFPâ€expressing locus coeruleus. Journal of Physiology, 2002, 541, 169-185.	1.3	149
25	Endometrial stem cell transplantation restores dopamine production in a Parkinson's disease model. Journal of Cellular and Molecular Medicine, 2011, 15, 747-755.	1.6	146
26	Excitatory Actions of GABA Increase BDNF Expression via a MAPK-CREB–Dependent Mechanism—A Positive Feedback Circuit in Developing Neurons. Journal of Neurophysiology, 2002, 88, 1005-1015.	0.9	139
27	AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nature Neuroscience, 2012, 15, 1108-1110.	7.1	136
28	Prolylcarboxypeptidase regulates food intake by inactivating α-MSH in rodents. Journal of Clinical Investigation, 2009, 119, 2291-303.	3.9	122
29	Regulation of Synaptic Efficacy in Hypocretin/Orexin-Containing Neurons by Melanin Concentrating Hormone in the Lateral Hypothalamus. Journal of Neuroscience, 2008, 28, 9101-9110.	1.7	120
30	Mediation of the Acute Stress Response by the Skeleton. Cell Metabolism, 2019, 30, 890-902.e8.	7.2	110
31	Fetal Radiofrequency Radiation Exposure From 800-1900 Mhz-Rated Cellular Telephones Affects Neurodevelopment and Behavior in Mice. Scientific Reports, 2012, 2, 312.	1.6	109
32	Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. Journal of Clinical Investigation, 2007, 117, 4022-4033.	3.9	103
33	Lateral hypothalamus: Early developmental expression and response to hypocretin (orexin). Journal of Comparative Neurology, 2001, 433, 349-363.	0.9	92
34	GABA, Not Glutamate, a Primary Transmitter Driving Action Potentials in Developing Hypothalamic Neurons. Journal of Neurophysiology, 2001, 85, 425-434.	0.9	84
35	Corticosterone Regulates Synaptic Input Organization of POMC and NPY/AgRP Neurons in Adult Mice. Endocrinology, 2010, 151, 5395-5402.	1.4	74
36	Glutamate Inhibits GABA Excitatory Activity in Developing Neurons. Journal of Neuroscience, 1998, 18, 10749-10761.	1.7	69

XIAO-BING GAO

#	Article	IF	CITATIONS
37	GABA-Dependent Firing of Glutamate-Evoked Action Potentials at AMPA/Kainate Receptors in Developing Hypothalamic Neurons. Journal of Neurophysiology, 1998, 79, 716-726.	0.9	66
38	Endometriosis alters brain electrophysiology, gene expression and increases pain sensitization, anxiety, and depression in female miceâ€. Biology of Reproduction, 2018, 99, 349-359.	1.2	66
39	GABA release from mouse axonal growth cones. Journal of Physiology, 2000, 523, 629-637.	1.3	64
40	Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances the learning of cue-reward contingency. ELife, 2020, 9, .	2.8	55
41	Melaninâ€concentrating hormone depresses Lâ€; Nâ€; and P/Qâ€type voltageâ€dependent calcium channels in ra lateral hypothalamic neurons. Journal of Physiology, 2002, 542, 273-286.	t 1.3	52
42	Function and Dysfunction of Hypocretin/Orexin: An Energetics Point of View. Annual Review of Neuroscience, 2014, 37, 101-116.	5.0	46
43	Intracellular energy status regulates activity in hypocretin/orexin neurones: a link between energy and behavioural states. Journal of Physiology, 2011, 589, 4157-4166.	1.3	43
44	Repeated <i>in vivo</i> exposure of cocaine induces longâ€lasting synaptic plasticity in hypocretin/orexinâ€producing neurons in the lateral hypothalamus in mice. Journal of Physiology, 2013, 591, 1951-1966.	1.3	43
45	Kainate Acts at Presynaptic Receptors to Increase GABA Release From Hypothalamic Neurons. Journal of Neurophysiology, 1999, 82, 1059-1062.	0.9	41
46	Neurons Synthesizing Melanin-Concentrating Hormone Identified by Selective Reporter Gene Expression After Transfection In Vitro: Transmitter Responses. Journal of Neurophysiology, 2003, 90, 3978-3985.	0.9	41
47	Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward autoactivation loop in mice. Journal of Clinical Investigation, 2021, 131, .	3.9	38
48	Electrophysiological effects of MCH on neurons in the hypothalamus. Peptides, 2009, 30, 2025-2030.	1.2	37
49	Erk1/2 Mediates Leptin Receptor Signaling in the Ventral Tegmental Area. PLoS ONE, 2011, 6, e27180.	1.1	30
50	Prolyl Endopeptidase-Deficient Mice Have Reduced Synaptic Spine Density in the CA1 Region of the Hippocampus, Impaired LTP, and Spatial Learning and Memory. Cerebral Cortex, 2013, 23, 2007-2014.	1.6	28
51	Neurotrophin-3 potentiates excitatory GABAergic synaptic transmission in cultured developing hypothalamic neurones of the rat. Journal of Physiology, 1999, 518, 81-95.	1.3	25
52	Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals. Frontiers in Systems Neuroscience, 2015, 9, 142.	1.2	25
53	Membrane Properties Underlying Patterns of GABA-Dependent Action Potentials in Developing Mouse Hypothalamic Neurons. Journal of Neurophysiology, 2001, 86, 1252-1265.	0.9	24
54	Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice. Journal of Clinical Investigation, 2020, 130, 4985-4998.	3.9	21

XIAO-BING GAO

#	Article	IF	CITATIONS
55	Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior. Molecular Psychiatry, 2021, 26, 2740-2752.	4.1	20
56	Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons. ELife, 2017, 6, .	2.8	19
57	Acetylcholine Acts through Nicotinic Receptors to Enhance the Firing Rate of a Subset of Hypocretin Neurons in the Mouse Hypothalamus through Distinct Presynaptic and Postsynaptic Mechanisms. ENeuro, 2015, 2, ENEURO.0052-14.2015.	0.9	19
58	Experienceâ€dependent plasticity in hypocretin/orexin neurones: reâ€setting arousal threshold. Acta Physiologica, 2010, 198, 251-262.	1.8	17
59	Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons. Diabetes, 2017, 66, 1511-1520.	0.3	13
60	Feeding Behavior: Hypocretin/Orexin Neurons Act between Food Seeking and Eating. Current Biology, 2016, 26, R845-R847.	1.8	10
61	A step towards the automation of intracytoplasmic sperm injection: real time confirmation of mouse and human oocyte penetration and viability by electrical resistance measurement. Fertility and Sterility, 2020, 113, 234-236.	0.5	9
62	Dopamine neuronal protection in the mouse Substantia nigra by GHSR is independent of electric activity. Molecular Metabolism, 2019, 24, 120-138.	3.0	7
63	Critical role of Lin28â€TNFR2 signalling in cardiac stem cell activation and differentiation. Journal of Cellular and Molecular Medicine, 2019, 23, 0-0.	1.6	7
64	The steroid hormone estriol (E3) regulates epigenetic programming of fetal mouse brain and reproductive tract. BMC Biology, 2022, 20, 93.	1.7	7
65	Plasticity in Neurons Synthesizing Wake/Arousal Promoting Hormone Hypocretin/Orexin. Vitamins and Hormones, 2012, 89, 35-59.	0.7	5
66	The Role of Melanin-Concentrating Hormone in the Regulation of the Sleep/Wake Cycle: Sleep Promoter or Arousal Modulator?. , 2018, , 57-74.		5
67	An Arousing Discovery on Catalepsy: Orexin Regulates Vestibular Motor Functions. Neuron, 2011, 69, 588-590.	3.8	3
68	Activation of Hypocretin Neurons in Endometriosis. Reproductive Sciences, 2022, 29, 243-249.	1.1	3
69	From Molecule to Behavior: Hypocretin/orexin Revisited From a Sex-dependent Perspective. Endocrine Reviews, 2022, 43, 743-760.	8.9	3
70	A step towards the automation of intracytoplasmic sperm injection (ICSI): real time confirmation of oocyte penetration by electrical resistance measurement. Fertility and Sterility, 2019, 112, e90-e91.	0.5	0