
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/33702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 2007, 13, 5106-5112.	1.7	809
2	Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 2014, 114, 6179-6212.	23.0	595
3	Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 2010, 99, 1-26.	10.8	570
4	Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications, 2012, 48, 11275.	2.2	378
5	Photocatalytic CO ₂ Reduction using Nonâ€Titanium Metal Oxides and Sulfides. ChemSusChem, 2013, 6, 562-577.	3.6	282
6	Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science and Technology, 2011, 1, 856.	2.1	281
7	Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 2017, 46, 4501-4529.	18.7	273
8	Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 2016, 312, 99-148.	9.5	270
9	Metal Nanoparticles as Heterogeneous Fenton Catalysts. ChemSusChem, 2012, 5, 46-64.	3.6	254
10	Enhancement of the Catalytic Activity of Supported Gold Nanoparticles for the Fenton Reaction by Light. Journal of the American Chemical Society, 2011, 133, 2218-2226.	6.6	235
11	Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metalâ^'Organic Frameworks Assisted by TEMPO. ACS Catalysis, 2011, 1, 48-53.	5.5	229
12	Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2012, 2, 2060-2065.	5.5	213
13	Catalytic activity of unsupported gold nanoparticles. Catalysis Science and Technology, 2013, 3, 58-69.	2.1	212
14	lron(<scp>iii</scp>) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catalysis Science and Technology, 2012, 2, 324-330.	2.1	197
15	Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 2010, 16, 8530-8536.	1.7	196
16	Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 2006, 128, 6626-6635.	6.6	194
17	Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chemical Communications, 2012, 48, 5443.	2.2	180
18	Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials. ChemSusChem, 2011, 4, 1712-1730.	3.6	177

#	Article	IF	CITATIONS
19	Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie - International Edition, 2010, 49, 8403-8407.	7.2	175
20	Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 2009, 267, 1-4.	3.1	167
21	Synthesis and catalytic activity of a chiral periodic mesoporous organosilica (ChiMO). Chemical Communications, 2003, , 1860-1861.	2.2	165
22	Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 2011, 40, 6344.	1.6	147
23	Periodic mesoporous organosilica incorporating a catalytically active vanadyl Schiff base complex in the framework. Journal of Catalysis, 2004, 223, 106-113.	3.1	142
24	??-functionalized mesoporous MCM-41 silica shows high activity and selectivity for carboxylic acid esterification and Friedel?Crafts acylation reactions. Journal of Catalysis, 2005, 231, 48-55.	3.1	142
25	Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 2010, 46, 6476.	2.2	142
26	Biodistribution of Amino-Functionalized Diamond Nanoparticles. <i>In Vivo</i> Studies Based on ¹⁸ F Radionuclide Emission. ACS Nano, 2011, 5, 5552-5559.	7.3	138
27	Doped Graphene as a Metalâ€Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 2013, 19, 7547-7554.	1.7	138
28	Fenton-Treated Functionalized Diamond Nanoparticles as Gene Delivery System. ACS Nano, 2010, 4, 65-74.	7.3	137
29	Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis and Catalysis, 2010, 352, 3022-3030.	2.1	136
30	MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes. Green Chemistry, 2016, 18, 508-515.	4.6	128
31	Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal–Organic Framework Solids. ChemCatChem, 2010, 2, 1438-1443.	1.8	125
32	Intrazeolite Photochemistry. 17. Zeolites as Electron Donors:  Photolysis of Methylviologen Incorporated within Zeolites. Journal of Physical Chemistry B, 1997, 101, 3043-3051.	1.2	120
33	Sidewall Functionalization of Single-Walled Carbon Nanotubes with Nitrile Imines. Electron Transfer from the Substituent to the Carbon Nanotube. Journal of Physical Chemistry B, 2004, 108, 12691-12697.	1.2	117
34	Ti as Mediator in the Photoinduced Electron Transfer of Mixed-Metal NH ₂ –UiO-66(Zr/Ti): Transient Absorption Spectroscopy Study and Application in Photovoltaic Cell. Journal of Physical Chemistry C, 2017, 121, 7015-7024.	1.5	116
35	Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three β-lactam antibiotics with ClO2. Water Research, 2008, 42, 1935-1942.	5.3	113
36	CO fixation using recoverable chromium salen catalysts: use of ionic liquids as cosolvent or high-surface-area silicates as supports. Journal of Catalysis, 2004, 228, 254-258.	3.1	111

#	Article	IF	CITATIONS
37	Single-step preparation and catalytic activity of mesoporous MCM-41 and SBA-15 silicas functionalized with perfluoroalkylsulfonic acid groups analogous to Nafion®. Chemical Communications, 2004, , 956-957.	2.2	110
38	Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Applied Catalysis B: Environmental, 2010, 99, 191-197.	10.8	110
39	Photocatalytic Activity of Structured Mesoporous TiO2Materials. Journal of Physical Chemistry B, 2006, 110, 6661-6665.	1.2	107
40	Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry, 2018, 20, 86-107.	4.6	107
41	Iron phthalocyanine supported on silica or encapsulated inside zeolite Y as solid photocatalysts for the degradation of phenols and sulfur heterocycles. Applied Catalysis B: Environmental, 2005, 57, 37-42.	10.8	106
42	Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 2012, 289, 259-265.	3.1	105
43	Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS Catalysis, 2011, 1, 836-840.	5.5	104
44	Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Applied Catalysis B: Environmental, 2020, 278, 119345.	10.8	104
45	Claisen–Schmidt Condensation Catalyzed by Metalâ€Organic Frameworks. Advanced Synthesis and Catalysis, 2010, 352, 711-717.	2.1	101
46	MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 2015, 5, 3216-3224.	5.5	100
47	Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 2010, 378, 19-25.	2.2	98
48	Metalâ€Organic Frameworks (MOFs) as Heterogeneous Catalysts for the Chemoselective Reduction of Carbon arbon Multiple Bonds with Hydrazine. Advanced Synthesis and Catalysis, 2009, 351, 2271-2276.	2.1	93
49	General Strategy for High-Density Covalent Functionalization of Diamond Nanoparticles Using Fenton Chemistry. Chemistry of Materials, 2009, 21, 4505-4514.	3.2	93
50	A periodic mesoporous organosilica containing electron acceptor viologen units. Chemical Communications, 2001, , 2546-2547.	2.2	91
51	Polymer-bound aluminium salen complex as reusable catalysts for CO2 insertion into epoxides. Tetrahedron, 2005, 61, 12131-12139.	1.0	87
52	Graphenes as Efficient Metalâ€Free Fenton Catalysts. Chemistry - A European Journal, 2015, 21, 11966-11971.	1.7	87
53	Engineering of activated carbon surface to enhance the catalytic activity of supported cobalt oxide nanoparticles in peroxymonosulfate activation. Applied Catalysis B: Environmental, 2019, 249, 42-53.	10.8	87
54	Synthesis of Chiral Periodic Mesoporous Silicas (ChiMO) of MCM-41 Type with Binaphthyl and Cyclohexadiyl Groups Incorporated in the Framework and Direct Measurement of Their Optical Activity. Chemistry of Materials, 2004, 16, 2222-2228.	3.2	86

#	Article	IF	CITATIONS
55	Photochemical Response of Commercial MOFs: Al ₂ (BDC) ₃ and Its Use As Active Material in Photovoltaic Devices. Journal of Physical Chemistry C, 2011, 115, 22200-22206.	1.5	83
56	Intracrystalline diffusion in Metal Organic Framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton Transactions, 2011, 40, 10719.	1.6	79
57	Intrazeolite Photochemistry. 20. Characterization of Highly Luminescent Europium Complexes inside Zeolites. Journal of Physical Chemistry B, 1998, 102, 8744-8750.	1.2	75
58	Screening of an ionic liquid as medium for photochemical reactions. Chemical Physics Letters, 2002, 362, 435-440.	1.2	74
59	Nano-Jewels in Biology. Gold and Platinum on Diamond Nanoparticles as Antioxidant Systems Against Cellular Oxidative Stress. ACS Nano, 2010, 4, 6957-6965.	7.3	73
60	Atmosphericâ€Pressure, Liquidâ€Phase, Selective Aerobic Oxidation of Alkanes Catalysed by Metal–Organic Frameworks. Chemistry - A European Journal, 2011, 17, 6256-6262.	1.7	70
61	Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs. Journal of Materials Chemistry A, 2019, 7, 20285-20292.	5.2	69
62	Carbohydrates as trihalomethanes precursors. Influence of pH and the presence of Clâ^' and Brâ^' on trihalomethane formation potential. Water Research, 2008, 42, 3990-4000.	5.3	68
63	Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 677-684.	10.8	65
64	High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 2015, 6, 8561.	5.8	63
65	Graphene Oxide as Catalyst for the Acetalization of Aldehydes at Room Temperature. ChemCatChem, 2012, 4, 2026-2030.	1.8	62
66	Influence of functionalization of terephthalate linker on the catalytic activity of UiO-66 for epoxide ring opening. Journal of Molecular Catalysis A, 2016, 425, 332-339.	4.8	58
67	Polymerization of Alkynes in the Channels of Mesoporous Materials Containing Ni and Zn Cations:Â Almost Complete Filling of the Voids. Journal of the American Chemical Society, 2001, 123, 3141-3142.	6.6	57
68	Reversible Porosity Changes in Photoresponsive Azobenzene-Containing Periodic Mesoporous Silicas. Chemistry of Materials, 2005, 17, 4958-4964.	3.2	55
69	Photochemical modification of the surface area and tortuosity of a trans-1,2-bis(4-pyridyl)ethylene periodic mesoporous MCM organosilica. Chemical Communications, 2002, , 2012-2013.	2.2	54
70	Chlorine dioxide reaction with selected amino acids in water. Journal of Hazardous Materials, 2009, 164, 1089-1097.	6.5	54
71	Graphene as a Quencher of Electronic Excited States of Photochemical Probes. Langmuir, 2012, 28, 2849-2857.	1.6	54
72	Intrazeolite Photochemistry. 21. 2,4,6-Triphenylpyrylium Encapsulated inside Zeolite Y Supercages as Heterogeneous Photocatalyst for the Generation of Hydroxyl Radical. Journal of the American Chemical Society, 1998, 120, 7351-7352.	6.6	53

#	Article	IF	CITATIONS
73	Reduction of alkenes catalyzed by copper nanoparticles supported on diamond nanoparticles. Chemical Communications, 2013, 49, 2359.	2.2	53
74	Electrical Conductivity of Zeolite Films:  Influence of Charge Balancing Cations and Crystal Structure. Chemistry of Materials, 2006, 18, 26-33.	3.2	52
75	2,4,6-Triphenylpyrylium ion encapsulated within Y zeolite as photocatalyst for the degradation of methyl parathion. Water Research, 2000, 34, 320-326.	5.3	51
76	Synthesis and photochemistry of soluble, pentyl ester-modified single wall carbon nanotube. Chemical Physics Letters, 2004, 386, 342-345.	1.2	51
77	An organically modified single wall carbon nanotube containing a pyrene chromophore: fluorescence and diffuse reflectance laser flash photolysis study. Chemical Physics Letters, 2004, 384, 119-123.	1.2	50
78	Visible-light C–heteroatom bond cleavage and detoxification of chemical warfare agents using titania-supported gold nanoparticles as photocatalyst. Journal of Materials Chemistry, 2010, 20, 4050.	6.7	50
79	Optimized water treatment by combining catalytic Fenton reaction using diamond supported gold and biological degradation. Applied Catalysis B: Environmental, 2011, 103, 246-252.	10.8	50
80	Functional Molecules from Single Wall Carbon Nanotubes. Photoinduced Solubility of Short Single Wall Carbon Nanotube Residues by Covalent Anchoring of 2,4,6-Triarylpyrylium Units. Journal of the American Chemical Society, 2007, 129, 5647-5655.	6.6	49
81	General aspects in the use of graphenes in catalysis. Materials Horizons, 2018, 5, 363-378.	6.4	49
82	2, 4, 6-Triphenylpyrylium ion encapsulated in Y zeolite as photocatalyst. A co-operative contribution of the zeolite host to the photodegradation of 4-chlorophenoxyacetic acid using solar light. Applied Catalysis B: Environmental, 1998, 15, 247-257.	10.8	48
83	Enhanced Photocatalytic Activity of Zeolite-Encapsulated TiO2 Clusters by Complexation with Organic Additives and N-Doping. ChemPhysChem, 2006, 7, 200-205.	1.0	48
84	Iron oxide nanoparticles supported on diamond nanoparticles as efficient and stable catalyst for the visible light assisted Fenton reaction. Applied Catalysis B: Environmental, 2018, 226, 242-251.	10.8	47
85	Reduced Graphene Oxide as a Metalâ€Free Catalyst for the Lightâ€Assisted Fentonâ€Like Reaction. ChemCatChem, 2016, 8, 2642-2648.	1.8	46
86	Intrazeolite Photochemistry. 26. Photophysical Properties of Nanosized TiO2Clusters Included in Zeolites Y, β, and Mordenite. Chemistry of Materials, 2001, 13, 715-722.	3.2	45
87	Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 2011, 12, 1018-1021.	1.6	44
88	Sunlightâ€Assisted Fenton Reaction Catalyzed by Gold Supported on Diamond Nanoparticles as Pretreatment for Biological Degradation of Aqueous Phenol Solutions. ChemSusChem, 2011, 4, 650-657.	3.6	44
89	Influence of the Preparation Procedure on the Catalytic Activity of Gold Supported on Diamond Nanoparticles for Phenol Peroxidation. Chemistry - A European Journal, 2011, 17, 9494-9502.	1.7	44
90	Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles. ChemCatChem, 2013, 5, 241-246.	1.8	44

#	Article	IF	CITATIONS
91	Influence of Terephthalic Acid Substituents on the Catalytic Activity of MILâ€101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 2017, 9, 2506-2511.	1.8	44
92	Cu(II)-Schiff base covalently anchored to MIL-125(Ti)-NH2 as heterogeneous catalyst for oxidation reactions. Journal of Colloid and Interface Science, 2018, 532, 700-710.	5.0	44
93	A novel copper(<scp>ii</scp>)–lanthanum(<scp>iii</scp>) metal organic framework as a selective catalyst for the aerobic oxidation of benzylic hydrocarbons and cycloalkenes. Catalysis Science and Technology, 2016, 6, 3727-3736.	2.1	42
94	Laser Flash Photolysis Study of Jacobsen Catalyst and Related Manganese(III) Salen Complexes. Relevance to Catalysis. Journal of the American Chemical Society, 2001, 123, 7074-7080.	6.6	41
95	Gold Nanoparticles Supported on Nanoparticulate Ceria as a Powerful Agent against Intracellular Oxidative Stress. Small, 2012, 8, 1895-1903.	5.2	40
96	Degradation of propoxur in water using 2,4,6-triphenylpyrylium–Zeolite Y as photocatalyst. Applied Catalysis B: Environmental, 2000, 25, 257-265.	10.8	39
97	Polymer―and Ionic Liquidâ€Containing Palladium: Recoverable Soluble Crossâ€Coupling Catalysts. ChemCatChem, 2013, 5, 3460-3480.	1.8	39
98	Covalently Modified Graphenes in Catalysis, Electrocatalysis and Photoresponsive Materials. Chemistry - A European Journal, 2017, 23, 15244-15275.	1.7	39
99	Synergism of Activated Carbon and Undoped and Nitrogenâ€doped TiO ₂ in the Photocatalytic Degradation of the Chemical Warfare Agents Soman, VX, and Yperite. ChemSusChem, 2009, 2, 427-436.	3.6	38
100	Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite. Nanoscale, 2015, 7, 1744-1752.	2.8	38
101	Electrochemistry of Mesoporous Organosilica of MCM-41 Type Containing 4,4â€~-Bipyridinium Units:Â Voltammetric Response and Electrocatalytic Effect on 1,4-Dihydrobenzoquinone Oxidation. Journal of Physical Chemistry B, 2003, 107, 12781-12788.	1.2	37
102	A Novel Concept for Photovoltaic Cells: Clusters of Titanium Dioxide Encapsulated within Zeolites as Photoactive Semiconductors. ChemPhysChem, 2006, 7, 1996-2002.	1.0	35
103	Photocatalytic water disinfection of Cryptosporidium parvum and Giardia lamblia using a fibrous ceramic TiO2 photocatalyst. Water Science and Technology, 2009, 59, 639-645.	1.2	35
104	Hydroxyalkylation of benzene derivatives by benzaldehyde in the presence of acid zeolites. Applied Catalysis A: General, 1998, 175, 105-112.	2.2	34
105	Increasing the Stability of Electroluminescent Phenylenevinylene Polymers by Encapsulation in Nanoporous Inorganic Materials. Chemistry of Materials, 2004, 16, 2142-2147.	3.2	34
106	Preparation and Photochemistry of Single Wall Carbon Nanotubes Having Covalently Anchored Viologen Units. Journal of Physical Chemistry B, 2005, 109, 7692-7697.	1.2	33
107	Copper Nanoparticles Supported on Doped Graphenes as Catalyst for the Dehydrogenative Coupling of Silanes and Alcohols. Angewandte Chemie - International Edition, 2014, 53, 12581-12586.	7.2	33
108	Photocatalytic degradation of sulphur-containing aromatic compounds in the presence of zeolite-bound 2,4,6-triphenylpyrylium and 2,4,6-triphenylthiapyrylium. Applied Catalysis B: Environmental, 2004, 51, 195-202.	10.8	32

#	Article	IF	CITATIONS
109	Friedel–Crafts hydroxyalkylation: reaction of anisole with paraformaldehyde catalyzed by zeolites in supercritical CO2. Journal of Catalysis, 2003, 219, 464-468.	3.1	31
110	Influence of Hydrogen Annealing on the Photocatalytic Activity of Diamond-Supported Gold Catalysts. ACS Applied Materials & Interfaces, 2013, 5, 7160-7169.	4.0	31
111	Bimetallic iron-copper oxide nanoparticles supported on nanometric diamond as efficient and stable sunlight-assisted Fenton photocatalyst. Chemical Engineering Journal, 2020, 393, 124770.	6.6	31
112	Ship-in-a-bottle synthesis of 2,4,6-triphenylthiapyrylium cations encapsulated in zeolites Y and beta: a novel robust photocatalyst. Photochemical and Photobiological Sciences, 2004, 3, 189.	1.6	30
113	Influence of radical initiators in gold catalysis: Evidence supporting trapping of radicals derived from azobis(isobutyronitrile) by gold halides. Journal of Catalysis, 2007, 245, 249-252.	3.1	30
114	Photochemistry of gold nanoparticles functionalized with an iron(ii) terpyridine complex. An integrated visible light photocatalyst for hydrogen generation. Dalton Transactions, 2009, , 7437.	1.6	30
115	Photochemistry of single wall carbon nanotubes embedded in a mesoporous silica matrix. Chemical Communications, 2002, , 3004-3005.	2.2	29
116	Sensitizers on Inorganic Carriers for Decomposition of the Chemical Warfare Agent Yperite. Environmental Science & Technology, 2008, 42, 4908-4913.	4.6	29
117	Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis, 2018, 365, 450-463.	3.1	29
118	Photoinduced Electron Transfer in Ionic Liquids:Â Use of 2,4,6-Triphenylthiapyrylium as a Photosensitizer Probe. Journal of Physical Chemistry B, 2006, 110, 14956-14960.	1.2	28
119	Ca2+ and Mg2+ present in hard waters enhance trihalomethane formation. Journal of Hazardous Materials, 2009, 169, 901-906.	6.5	28
120	Alginate as Template in the Preparation of Active Titania Photocatalysts. ChemCatChem, 2013, 5, 513-518.	1.8	28
121	Silver Nanoparticles Supported on Diamond Nanoparticles as a Highly Efficient Photocatalyst for the Fenton Reaction under Natural Sunlight Irradiation. ChemCatChem, 2015, 7, 2682-2688.	1.8	28
122	Nickel nanoparticles supported on graphene as catalysts for aldehyde hydrosilylation. Journal of Molecular Catalysis A, 2016, 412, 13-19.	4.8	28
123	Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science and Technology, 2017, 7, 1351-1362.	2.1	28
124	Design of stable mixed-metal MIL-101(Cr/Fe) materials with enhanced catalytic activity for the Prins reaction. Journal of Materials Chemistry A, 2020, 8, 17002-17011.	5.2	28
125	Study of Redox Processes in Zeolite Y-Associated 2,4,6-Triphenylthiopyrylium Ion by Square Wave Voltammetry. Journal of Physical Chemistry B, 2003, 107, 3040-3050.	1.2	27
126	Influence of pretreatments on commercial diamond nanoparticles on the photocatalytic activity of supported gold nanoparticles under natural Sunlight irradiation. Applied Catalysis B: Environmental, 2013, 142-143, 259-267.	10.8	27

MERCEDES ALVARO

#	Article	IF	CITATIONS
127	Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene. Chemical Communications, 2013, 49, 3236.	2.2	27
128	Palladium nanoparticles supported on graphene as catalysts for the dehydrogenative coupling of hydrosilanes and amines. Catalysis Science and Technology, 2015, 5, 2167-2173.	2.1	27
129	Graphenes as Metalâ€free Catalysts for the Oxidative Depolymerization of Lignin Models. ChemCatChem, 2015, 7, 3020-3026.	1.8	27
130	<i>N</i> â€Hydroxyphthalimide Anchored on Diamond Nanoparticles as a Selective Heterogeneous Metalâ€free Oxidation Catalyst of Benzylic Hydrocarbons and Cyclic Alkenes by Molecular O ₂ . ChemCatChem, 2018, 10, 198-205.	1.8	27
131	Electrochemiluminescence of a Periodic Mesoporous Organosilica Containing 9,10-Diarylanthracene Units. Journal of Physical Chemistry C, 2007, 111, 7532-7538.	1.5	26
132	Ruthenium(II) Tris(2,2′-bipyridyl) Complex Incorporated in UiO-67 as Photoredox Catalyst. Journal of Physical Chemistry C, 2018, 122, 29190-29199.	1.5	26
133	Modified mesoporous MCM-41 as hosts for photochromic spirobenzopyrans. Photochemical and Photobiological Sciences, 2002, 1, 219-223.	1.6	26
134	Liposomes by Polymerization of an Imidazolium Ionic Liquid: Use as Microreactors for Gold atalyzed Alcohol Oxidation. Chemistry - A European Journal, 2009, 15, 13082-13089.	1.7	25
135	Structured Mesoporous Tin Oxide with Electrical Conductivity. Application in Electroluminescence. Journal of the American Chemical Society, 2009, 131, 1342-1343.	6.6	25
136	Novel photocatalysts containing 2,4,6-triphenylthiapyrylium encapsulated within zeolites. Enhanced photocatalytic activity as compared to the pyrylium analogues. New Journal of Chemistry, 2004, 28, 631-639.	1.4	23
137	Long-lived (minutes) photoinduced charge separation in a structured periodic mesoporous titania containing 2,4,6-triphenylpyrylium as guest. Dalton Transactions, 2008, , 5465.	1.6	23
138	Reduction of Câ•C Double Bonds by Hydrazine Using Active Carbons as Metal-Free Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 5607-5614.	3.2	23
139	Diamond Nanoparticles in Heterogeneous Catalysis. Chemistry of Materials, 2020, 32, 4116-4143.	3.2	23
140	New photochemical approaches to the synthesis of chromones. Tetrahedron, 1987, 43, 143-148.	1.0	22
141	Heterogeneous Gif oxidation of cyclohexane using Fe3+-picolinate complex encapsulated within zeolites. Tetrahedron, 1999, 55, 11895-11902.	1.0	22
142	Photochemical Generation of Electrons and Holes in Germanium-Containing ITQ-17 Zeolite. Journal of Physical Chemistry B, 2005, 109, 3696-3700.	1.2	21
143	Covalent Functionalization of Short, Single-Wall Carbon Nanotubes: Photophysics of 2,4,6-Triphenylpyrylium Attached to the Nanotube Walls. Chemistry of Materials, 2009, 21, 884-890.	3.2	21
144	Photocatalytic hydrogen generation from water–methanol mixtures using halogenated reconstituted graphenes. Journal of Materials Chemistry A, 2013, 1, 11728.	5.2	21

#	Article	IF	CITATIONS
145	MIL-101(Cr)-NO2 as efficient catalyst for the aerobic oxidation of thiophenols and the oxidative desulfurization of dibenzothiophenes. Applied Catalysis A: General, 2020, 590, 117340.	2.2	21
146	Bipyridinium Macroring Encapsulated within Zeolite Y Supercages. Preparation and Intrazeolitic Photochemistry of a Common Electron Acceptor Component of Rotaxanes and Catenanes. Journal of Physical Chemistry B, 2002, 106, 6815-6820.	1.2	20
147	Deactivation of Cu3(BTC)2 in the Synthesis of 2-Phenylquinoxaline. Catalysis Letters, 2015, 145, 1600-1605.	1.4	20
148	Copper nanoparticles supported on diamond nanoparticles as a cost-effective and efficient catalyst for natural sunlight assisted Fenton reaction. Catalysis Science and Technology, 2016, 6, 7077-7085.	2.1	20
149	First molecular switch encapsulated within the cavities of a zeolite. A dramatic lifetime increase of the charge-separated state. Chemical Communications, 2001, , 2106-2107.	2.2	19
150	Remarkably high electrochemical charge uptake for modified electrodes of polyacetylene molecular wires encapsulated within zeolites and mesoporous MCM-41 aluminosilicate. Chemical Physics Letters, 2002, 356, 577-584.	1.2	19
151	Electrochemiluminescence of Zeolite-Encapsulated Poly(p-phenylenevinylene). Journal of the American Chemical Society, 2007, 129, 8074-8075.	6.6	19
152	Superior Performance of Fe(BTC) With Respect to Other Metalâ€Containing Solids in the <i>N</i> â€Hydroxyphthalimideâ€Promoted Heterogeneous Aerobic Oxidation of Cycloalkanes. ChemCatChem, 2013, 5, 1964-1970.	1.8	19
153	Microsecond Transient Absorption Spectra of Suspended Semiconducting Metal Oxide Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 9275-9282.	1.5	19
154	Visibleâ€Light Photoresponse of Gold Nanoparticles Supported on TiO ₂ : A Combined Photocatalytic, Photoelectrochemical, and Transient Spectroscopy Study. ChemPhysChem, 2015, 16, 335-341.	1.0	19
155	An organic sensitizer within Ti-zeolites as photocatalyst for the selective oxidation of olefins using oxygen and water as reagents. Chemical Communications, 1999, , 1641-1642.	2.2	18
156	Catalytic Ozonation Using Edge-Hydroxylated Graphite-Based Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 17443-17452.	3.2	18
157	Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles. Journal of Colloid and Interface Science, 2020, 560, 885-893.	5.0	18
158	Intrazeolite Photochemistry. 24. Enantioselective Discrimination in the Quenching of Chiral Mn(II)salen Complexes Encapsulated inside Y Zeolite by Chiral 2-Butanols. Journal of the American Chemical Society, 1998, 120, 8521-8522.	6.6	17
159	Laser flash photolysis study of anthracene/viologen charge transfer complex in non-polar, dealuminated zeolites. Physical Chemistry Chemical Physics, 2004, 6, 1345-1349.	1.3	17
160	Ionic Liquids as a Novel Medium for Photochemical Reactions. Ru(bpy)32+/ Viologen in Imidazolium Ionic Liquid as a Photocatalytic System Mimicking the Oxido-Reductase Enzymeâ€. Photochemistry and Photobiology, 2006, 82, 185.	1.3	17
161	Encapsulation of Metal Nanoparticles within Metal–Organic Frameworks for the Reduction of Nitro Compounds. Molecules, 2019, 24, 3050.	1.7	17
162	Comparison between MCM-41 and Periodic Mesoporous Organosilica: Charge-Transfer Donor-Viologen Complexes as Probes. ChemPhysChem, 2003, 4, 612-617.	1.0	16

#	Article	IF	CITATIONS
163	Electrochemiluminescent Cells Based on Zeolite-Encapsulated Host–Guest Systems: Encapsulated Ruthenium Tris-bipyridyl. Chemistry - A European Journal, 2007, 13, 3733-3738.	1.7	16
164	Influence of self-assembly of amphiphilic imidazolium ionic liquids on their host–guest complexes with cucurbit[n]urils. Tetrahedron, 2012, 68, 4296-4301.	1.0	16
165	Influence of the solvent on the titanium beta catalyzed oxidation of phenylethylenes without carbon-carbon double bond cleavage. Applied Catalysis A: General, 1995, 128, L7-L11.	2.2	15
166	Product studies and laser flash photolysis of direct and 2,4,6-triphenylpyrylium–zeolite Y photocatalyzed degradation of fenvalerate. Photochemical and Photobiological Sciences, 2002, 1, 955-959.	1.6	15
167	Imidazolium ionic liquids in OLEDs: synthesis and improved electroluminescence of an â€`ionophilic' diphenylanthracene. Tetrahedron, 2008, 64, 6270-6274.	1.0	15
168	Twoâ€Photon Chemistry in Ruthenium 2,2′â€Bipyridylâ€Functionalized Singleâ€Wall Carbon Nanotubes. Chemistry - A European Journal, 2010, 16, 7282-7292.	1.7	15
169	Transient absorption spectroscopy and photochemical reactivity of CAU-8. Journal of Materials Chemistry C, 2015, 3, 3607-3613.	2.7	15
170	Engineering Active Sites in Reduced Graphene Oxide: Tuning the Catalytic Activity for Aerobic Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 15948-15956.	3.2	15
171	Tuning the Microenvironment of Gold Nanoparticles Encapsulated within MILâ€101(Cr) for the Selective Oxidation of Alcohols with O ₂ : Influence of the Amino Terephthalate Linker. Chemistry - A European Journal, 2019, 25, 9280-9286.	1.7	15
172	Complete Filling of Zeolite Frameworks with Polyalkynes Formed in Situ by Transition-Metal Ion Catalysts. Chemistry of Materials, 2005, 17, 2546-2551.	3.2	14
173	Highly dealuminated Y zeolite as efficient adsorbent for the hydrophobic fraction from wastewater treatment plants effluents. Journal of Hazardous Materials, 2009, 166, 553-560.	6.5	14
174	Synthesis and Photophysical Properties of the 4-(Biphenyl-4-yl)-2,6-bis(4-iodophenyl)pyrylium Ion. European Journal of Organic Chemistry, 2006, 2006, 2644-2648.	1.2	13
175	Influence of Carbon Supports on Palladium Nanoparticle Activity toward Hydrodeoxygenation and Aerobic Oxidation in Biomass Transformations. European Journal of Inorganic Chemistry, 2019, 2019, 1979-1987.	1.0	13
176	Charge transfer complexes between methylviologen and aromatic donors within faujasite Y: Influence of the alkaline metal counter cations. Tetrahedron Letters, 1996, 37, 2873-2876.	0.7	12
177	Spontaneous doping and magnetic properties of polyacetylene and polypropyne synthesized in situ in Ni-exchanged mordenite and mesoporous MCM-41. Physical Chemistry Chemical Physics, 2002, 4, 115-120.	1.3	12
178	Second harmonic generation of a periodic mesoporous silica containing a triphenylpyrylium moiety. Chemical Physics Letters, 2005, 414, 66-70.	1.2	12
179	Multi-method characterization of DOM from the Turia river (Spain). Applied Geochemistry, 2010, 25, 1632-1643.	1.4	12
180	Boron Nitride Nanoplatelets as a Solid Radical Initiator for the Aerobic Oxidation of Thiophenol to Diphenyldisulfide. ChemCatChem, 2015, 7, 776-780.	1.8	12

#	Article	IF	CITATIONS
181	Dyes decolorization using silver nanoparticles supported on nanometric diamond as highly efficient photocatalyst under natural Sunlight irradiation. Journal of Environmental Chemical Engineering, 2016, 4, 4485-4493.	3.3	12
182	HKUST-1 catalyzed room temperature hydrogenation of acetophenone by silanes. Catalysis Communications, 2017, 97, 74-78.	1.6	12
183	Multicomponent Donorâ"Acceptor Relay System Assembled within the Cavities of Zeolite Y. Photoinduced Electron Transfer between Ru(bpy)32+and 2,4,6-Triphenylpyrylium in the Presence of Interposed TiO2. Journal of Physical Chemistry B, 2004, 108, 16621-16625.	1.2	11
184	Photoinduced Formation and Characterization of Electron–Hole Pairs in Azaxanthyliumâ€Derivatized Short Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2009, 15, 8751-8759.	1.7	11
185	Laser flash photolysis of dioxo iron phthalocyanine intercalated in hydrotalcite and its use as a photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 19-22.	2.0	11
186	Electroluminescence response promoted by dispersion and interaction of perylene-3,4,9,10-tetracarboxylic dianhydride inside MOF5. RSC Advances, 2016, 6, 35191-35196.	1.7	11
187	Photochemistry of Charge-Transfer Complexes in a Viologen Periodic Mesoporous Organosilica: Time Evolution from Femtoseconds to Minutes. ChemPhysChem, 2004, 5, 1058-1062.	1.0	10
188	Enhanced efficiency of the visible-light photocatalytic hydrogen generation by the ruthenium tris(2,2′-bipyridyl)–methyl viologen system in the presence of cucurbit[n]urils. Photochemical and Photobiological Sciences, 2009, 8, 1650.	1.6	10
189	Photochemistry of covalently functionalized graphene oxide with phenothiazinyl units. Carbon, 2014, 74, 113-119.	5.4	10
190	Topological quenching of 2,4,6-triphenylpyrylium tetrafluoborate in anionic micelles. Chemical Physics Letters, 2001, 341, 153-160.	1.2	9
191	Ship-in-a-Bottle Synthesis of a Large Guest Occupying Two Y Zeolite Neighbour Supercages: Characterisation and Photocatalytic Activity of the Encapsulated Bipyrylium Ion. ChemPhysChem, 2003, 4, 483-487.	1.0	9
192	1,3,5-Triaryl-2-penten-1,5-dione anchored to insoluble supports as heterogeneous chromogenic chemosensor. Tetrahedron, 2004, 60, 8257-8263.	1.0	9
193	Synthesis and Photochemical Properties of Poly(2,5-dimethoxy-p-phenylenevinylene) Hosted in the Intergallery Spaces of Montmorillonite. Journal of Physical Chemistry B, 2006, 110, 16887-16891.	1.2	9
194	(Perfluoro)sulfonic acids having an imidazolium tag as homogeneous and reusable ionophilic Br¶nsted acid catalysts for carboxylic acid esterification. Applied Catalysis A: General, 2009, 369, 133-137.	2.2	9
195	Photophysical Evidence of Chargeâ€Transferâ€Complex Pairs in Mixedâ€Linker 5â€Amino/5â€Nitroisophthalate CAUâ€10. ChemPhysChem, 2014, 15, 924-928.	1.0	9
196	Room temperature silylation of alcohols catalyzed by metal organic frameworks. Catalysis Science and Technology, 2017, 7, 2445-2449.	2.1	9
197	Intrazeolite Photochemistry. 23. Transparent PDMS Films of Zeolites Incorporating Organic Guests:Â Quantitative Determination of Photophysical Parameters by Transmission Techniques. Journal of Physical Chemistry B, 1998, 102, 7530-7534.	1.2	8
198	A bis-benzimidazole-derived N, S macrocycle as sensor for transition metal ions in aqueous solution. Chemical Physics Letters, 2001, 350, 240-246.	1.2	8

MERCEDES ALVARO

#	Article	IF	CITATIONS
199	Photochemistry of a Chiral Salen Aluminum Complex in Nonconventional Solvents:Â Use of Imidazolium Ionic Liquids and Chiral Alcohols. Journal of Physical Chemistry A, 2007, 111, 6034-6038.	1.1	8
200	Photoinduced Charge Separation on the Microsecond Timescale in Graphene Oxide and Reduced Graphene Oxide Suspensions. ChemPhysChem, 2016, 17, 958-962.	1.0	8
201	Impact of chlorination and pre-ozonation on disinfection by-products formation from aqueous suspensions of cyanobacteria: Microcystis aeruginosa, Anabaena aequalis and Oscillatoria tenuis. Water Research, 2020, 183, 116070.	5.3	8
202	Influence of the ?-substitution on the photochemistry of ?,2-diacetoxystyrenes. Irradiation of phenyl, vinyl, and benzyl derivatives. Monatshefte Für Chemie, 1990, 121, 267-274.	0.9	7
203	Laser flash photolysis study of azides derived from Cr(iii) and Mn(iii) salen complexes. New Journal of Chemistry, 2002, 26, 1646-1650.	1.4	7
204	Supercritical CO2 as a superior solvent for the cyclization of diallylmalonate catalyzed by palladium-containing zeolites. Tetrahedron, 2004, 60, 8131-8135.	1.0	7
205	Gasâ€Phase Photochemical Overall H ₂ S Splitting by UV Light Irradiation. ChemSusChem, 2017, 10, 1996-2000.	3.6	7
206	Preparation and photochemical properties of p-phenylene oligomers encapsulated within faujasite Y. Physical Chemistry Chemical Physics, 2004, 6, 201-204.	1.3	6
207	Functional Macromolecules from Singleâ€Walled Carbon Nanotubes: Synthesis and Photophysical Properties of Short Singleâ€Walled Carbon Nanotubes Functionalised with 9,10â€Diphenylanthracene. Chemistry - A European Journal, 2008, 14, 5030-5038.	1.7	6
208	Influence of Dopant Loading on the Photo―and Electrochemical Properties of (N, O)â€Coâ€doped Graphene ChemPhysChem, 2015, 16, 2094-2098.	1.0	6
209	ChiralN-Alkyl-2,4,6-triphenylpyridiniums as Enantioselective Triplet Photosensitizers. Laser Flash Photolysis and Preparative Studiesâ€. Journal of Organic Chemistry, 2002, 67, 5184-5189.	1.7	5
210	Nearâ€Infrared Emission Quantum Yield of Soluble Short Singleâ€Walled Carbon Nanotubes. ChemPhysChem, 2009, 10, 1305-1310.	1.0	5
211	Organosilica Spheres Covalently Functionalized with Diphenylanthracene and Viologen Units. ChemPhysChem, 2010, 11, 3456-3464.	1.0	5
212	Bifunctional metal–organic frameworks for the hydrogenation of nitrophenol using methanol as the hydrogen source. Organic and Biomolecular Chemistry, 2021, 19, 794-800.	1.5	5
213	Photolysis of benzyl chloride included in Na Y zeolite: product study evidence for the implication of benzyl cation. Journal of the Chemical Society Chemical Communications, 1993, , 1041.	2.0	4
214	Modulation of charge transfer association and photo-induced electron transfer by steric encumbrance in FrA©chet-type viologen dendrimer. Chemical Physics Letters, 2002, 351, 374-378.	1.2	4
215	Donor/Conductor/Acceptor Triads Spatially Organized on the Micrometer-Length Scale: An Alternative Approach to Photovoltaic Cells. Chemistry - A European Journal, 2007, 13, 515-519.	1.7	4
216	Photophysics of Fluorene Copolymers Containing 1,3,4-Oxadiazole or 1,3,4-Oxadiazole and Carbazole Units. Journal of Physical Chemistry C, 2010, 114, 14255-14260.	1.5	4

#	Article	IF	CITATIONS
217	Host–guest complexes between cucurbit[n]urils and acetanilides having aminopropyl units. Journal of Colloid and Interface Science, 2013, 399, 54-61.	5.0	4
218	Perylenetetracarboxylic anhydride as a precursor of fluorescent carbon nanoonion rings. Nanoscale, 2015, 7, 12484-12491.	2.8	4
219	Tuning the active sites in reduced graphene oxide by hydroquinone functionalization for the aerobic oxidations of thiophenol and indane. Molecular Catalysis, 2020, 493, 111093.	1.0	4
220	A Soluble and Reusable Colorimetric Sensor Based on the Covalent Attachment of a Triarylpentenedione to Poly(ethylene glycol). European Journal of Organic Chemistry, 2005, 2005, 3045-3051.	1.2	3
221	Application of Dimethyl Carbonate as Solvent and Reagent. , 2012, , 363-374.		3
222	Selective photoinduced single or double electron reduction of perylenebisimides. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 231, 28-32.	2.0	3
223	Doped Framework Iron Hydroxyl Phosphate as Photocatalyst for Hydrogen Production from Water/Methanol Mixtures. European Journal of Inorganic Chemistry, 2015, 2015, 4237-4243.	1.0	3
224	Internal magnetic field effects on the photochemistry of a xanthone derivate covalently anchored to magnetite nanoparticles. Chemical Physics Letters, 2005, 410, 192-195.	1.2	2
225	Dye-sensitized solar cells made of titania nanoparticles structured into a mesoporous material. Canadian Journal of Chemistry, 2011, 89, 158-162.	0.6	2
226	Formation and Properties of a Hybrid Organosilica with a <i>p</i> â€Phenylene Vinylene Polymer Partially Grafted to the Walls. ChemPhysChem, 2013, 14, 618-626.	1.0	2
227	Photoactive Zr and Ti Metalâ€Organicâ€Frameworks for Solidâ€State Solar Cells. ChemPhysChem, 2021, 22, 842-848.	1.0	2
228	α,β-Enone Borylation by Bis(Pinacolato)Diboron Catalyzed by Cu3(BTC)2 Using Cesium Carbonate as a Base. Nanomaterials, 2021, 11, 1396.	1.9	2
229	Photochemical treatment for water potabilization. Influence of wavelength and hydrogen peroxide concentration on the reduction of trihalomethanes. Desalination and Water Treatment, 2009, 3, 21-28.	1.0	1
230	Frontispiece: Covalently Modified Graphenes in Catalysis, Electrocatalysis and Photoresponsive Materials. Chemistry - A European Journal, 2017, 23, .	1.7	1