Annette B G Janssen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11566-11572.	3.3	141
2	Shifting states, shifting services: Linking regime shifts to changes in ecosystem services of shallow lakes. Freshwater Biology, 2021, 66, 1-12.	1.2	123
3	Spatial identification of critical nutrient loads of large shallow lakes: Implications for Lake Taihu (China). Water Research, 2017, 119, 276-287.	5.3	111
4	Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake. Global Change Biology, 2017, 23, 737-754.	4.2	111
5	Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8089-E8095.	3.3	101
6	Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective. Aquatic Ecology, 2015, 49, 513-548.	0.7	97
7	Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes. Frontiers in Plant Science, 2018, 9, 194.	1.7	97
8	Accounting for interactions between Sustainable Development Goals is essential for water pollution control in China. Nature Communications, 2022, 13, 730.	5.8	97
9	Alternative stable states in large shallow lakes?. Journal of Great Lakes Research, 2014, 40, 813-826.	0.8	93
10	Towards a global model for wetlands ecosystem services. Current Opinion in Environmental Sustainability, 2019, 36, 11-19.	3.1	93
11	Attribution of global lake systems change to anthropogenic forcing. Nature Geoscience, 2021, 14, 849-854.	5.4	70
12	Excess nutrient loads to Lake Taihu: Opportunities for nutrient reduction. Science of the Total Environment, 2019, 664, 865-873.	3.9	68
13	Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys?. Environmental Management, 2017, 59, 619-634.	1.2	64
14	Coupled human and natural system dynamics as key to the sustainability of Lake Victoria's ecosystem services. Ecology and Society, 2014, 19, .	1.0	62
15	How to model algal blooms in any lake on earth. Current Opinion in Environmental Sustainability, 2019, 36, 1-10.	3.1	57
16	Modeling nutrients in Lake Dianchi (China) and its watershed. Agricultural Water Management, 2019, 212, 48-59.	2.4	54
17	Ecological resilience in lakes and the conjunction fallacy. Nature Ecology and Evolution, 2017, 1, 1616-1624.	3.4	52
18	FABM-PCLake – linking aquatic ecology with hydrodynamics. Geoscientific Model Development, 2016, 9, 2271-2278.	1.3	49

Annette B G Janssen

#	Article	IF	CITATIONS
19	Towards restoring urban waters: understanding the main pressures. Current Opinion in Environmental Sustainability, 2019, 36, 49-58.	3.1	47
20	PCLake+: A process-based ecological model to assess the trophic state of stratified and non-stratified freshwater lakes worldwide. Ecological Modelling, 2019, 396, 23-32.	1.2	46
21	Success of lake restoration depends on spatial aspects of nutrient loading and hydrology. Science of the Total Environment, 2019, 679, 248-259.	3.9	45
22	A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector. Geoscientific Model Development, 2022, 15, 4597-4623.	1.3	37
23	How models can support ecosystem-based management of coral reefs. Progress in Oceanography, 2015, 138, 559-570.	1.5	33
24	Integrated modelling and management of water resources: the ecosystem perspective on the nexus approach. Current Opinion in Environmental Sustainability, 2019, 40, 14-20.	3.1	33
25	Serving many at once: How a database approach can create unity in dynamical ecosystem modelling. Environmental Modelling and Software, 2014, 61, 266-273.	1.9	31
26	A perspective on water quality in connected systems: modelling feedback between upstream and downstream transport and local ecological processes. Current Opinion in Environmental Sustainability, 2019, 40, 21-29.	3.1	24
27	Modeling water quality in the Anthropocene: directions for the next-generation aquatic ecosystem models. Current Opinion in Environmental Sustainability, 2019, 36, 85-95.	3.1	23
28	Characterizing 19 thousand Chinese lakes, ponds and reservoirs by morphometric, climate and sediment characteristics. Water Research, 2021, 202, 117427.	5.3	21
29	Advantages of concurrent use of multiple software frameworks in water quality modelling using a database approach. Fundamental and Applied Limnology, 2015, 186, 5-20.	0.4	20
30	What is the pollution limit? Comparing nutrient loads with thresholds to improve water quality in Lake Baiyangdian. Science of the Total Environment, 2022, 807, 150710.	3.9	19
31	Exploring How Cyanobacterial Traits Affect Nutrient Loading Thresholds in Shallow Lakes: A Modelling Approach. Water (Switzerland), 2020, 12, 2467.	1.2	12
32	A Generically Parameterized model of Lake eutrophication (GPLake) that links field-, lab- and model-based knowledge. Science of the Total Environment, 2019, 695, 133887.	3.9	11
33	Ecological Instability in Lakes: A Predictable Condition?. Environmental Science & Technology, 2016, 50, 3285-3286.	4.6	10
34	How Regime Shifts in Connected Aquatic Ecosystems Are Affected by the Typical Downstream Increase of Water Flow. Ecosystems, 2017, 20, 733-744.	1.6	10
35	Modelling induced bank filtration effects on freshwater ecosystems to ensure sustainable drinking water production. Water Research, 2019, 157, 19-29.	5.3	10
36	GREEN AGRICULTURE AND BLUE WATER IN CHINA: REINTEGRATING CROP AND LIVESTOCK PRODUCTION FOR CLEAN WATER. Frontiers of Agricultural Science and Engineering, 2021, 8, 72.	0.9	10

#	Article	IF	CITATIONS
37	Smart Nutrient Retention Networks: a novel approach for nutrient conservation through water quality management. Inland Waters, 2022, 12, 138-153.	1.1	9