List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3369696/publications.pdf Version: 2024-02-01

Βιπ Ητιτ Τλι

#	Article	IF	CITATIONS
1	α-Glucosidase Inhibition Properties of Cucurbitane-Type Triterpene Glycosides from the Fruits of <i>Momordica charantia</i> . Chemical and Pharmaceutical Bulletin, 2010, 58, 720-724.	1.3	72
2	Antioxidative and anti-inflammatory effect of quercetin and its glycosides isolated from mampat (Cratoxylum formosum). Food Science and Biotechnology, 2012, 21, 587-595.	2.6	65
3	Anti-inflammatory components of Chrysanthemum indicum flowers. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 266-269.	2.2	65
4	Dammarane-Type Saponins from the Flower Buds of <i>Panax ginseng</i> and Their Intracellular Radical Scavenging Capacity. Journal of Agricultural and Food Chemistry, 2010, 58, 868-874.	5.2	53
5	A new ursane-type triterpenoid glycoside from Centella asiatica leaves modulates the production of nitric oxide and secretion of TNF-1± in activated RAW 264.7 cells. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1777-1781.	2.2	53
6	Anti-inflammatory components of Euphorbia humifusa Willd Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1895-1900.	2.2	49
7	Chemical constituents of the rhizomes of Hedychium coronarium and their inhibitory effect on the pro-inflammatory cytokines production LPS-stimulated in bone marrow-derived dendritic cells. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7460-7465.	2.2	45
8	Anti-inflammatory and PPAR transactivational effects of secondary metabolites from the roots of Asarum sieboldii. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2527-2533.	2.2	45
9	Cytotoxic and anti-inflammatory cembranoids from the Vietnamese soft coral Lobophytum laevigatum. Bioorganic and Medicinal Chemistry, 2011, 19, 2625-2632.	3.0	40
10	Oleanane-type triterpene saponins from the bark of Aralia elata and their NF-κB inhibition and PPAR activation signal pathway. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6143-6147.	2.2	39
11	Five new quassinoids and cytotoxic constituents from the roots of Eurycoma longifolia. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3835-3840.	2.2	38
12	Xanthine oxidase inhibitory activity of constituents of Cinnamomum cassia twigs. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4625-4628.	2.2	37
13	C29 sterols with a cyclopropane ring at C-25 and 26 from the Vietnamese marine sponge lanthella sp. and their anticancer properties. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4584-4588.	2.2	35
14	Total Peroxynitrite Scavenging Capacity of Phenylethanoid and Flavonoid Glycosides from the Flowers of Buddleja officinalis. Biological and Pharmaceutical Bulletin, 2009, 32, 1952-1956.	1.4	32
15	Diterpenoids from the Soft Coral <i>Sinularia maxima</i> and Their Inhibitory Effects on Lipopolysaccharide-Stimulated Production of Pro-inflammatory Cytokines in Bone Marrow-Derived Dendritic Cells. Chemical and Pharmaceutical Bulletin, 2012, 60, 1581-1589.	1.3	31
16	Chemical constituents of Trichosanthes kirilowii and their cytotoxic activities. Archives of Pharmacal Research, 2015, 38, 1443-1448.	6.3	31
17	New Pyrano-Pyrone from Goniothalamus tamirensis Enhances the Proliferation and Differentiation of Osteoblastic MC3T3-E1 Cells. Chemical and Pharmaceutical Bulletin, 2010, 58, 521-525.	1.3	28
18	Antioxidant activity of a new C-glycosylflavone from the leaves of Ficus microcarpa. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 633-637.	2.2	28

#	Article	IF	CITATIONS
19	A new phenylpropanoid and an alkylglycoside from Piper retrofractum leaves with their antioxidant and α-glucosidase inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4120-4124.	2.2	28
20	Macrolide and phenolic metabolites from the marine-derived fungus Paraconiothyrium sp. VK-13 with anti-inflammatory activity. Journal of Antibiotics, 2018, 71, 826-830.	2.0	28
21	Labdane-Type Diterpenoids from the Rhizomes of Hedychium coronarium Inhibit Lipopolysaccharide-Stimulated Production of Pro-inflammatory Cytokines in Bone Marrow-Derived Dendritic Cells. Chemical and Pharmaceutical Bulletin, 2012, 60, 246-250.	1.3	27
22	A New Phenolic Component from <i>Triticum aestivum</i> Sprouts and its Effects on LPS‣timulated Production of Nitric oxide and TNFâ€Î± in RAW 264.7 Cells. Phytotherapy Research, 2014, 28, 1064-1070.	5.8	26
23	Synthesis of Chromonylthiazolidines and Their Cytotoxicity to Human Cancer Cell Lines. Molecules, 2015, 20, 1151-1160.	3.8	26
24	Chrysoeriol isolated from the leaves of Eurya ciliata stimulates proliferation and differentiation of osteoblastic MC3T3-E1 cells. Journal of Asian Natural Products Research, 2009, 11, 817-823.	1.4	25
25	Rat intestinal sucrase inhibition of constituents from the roots of Rosa rugosa Thunb Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1192-1196.	2.2	25
26	Paratrimerins A and B, Two New Dimeric Monoterpene-Linked Coumarin Glycosides from the Roots and Stems of <i>Paramignya trimera</i> . Chemical and Pharmaceutical Bulletin, 2015, 63, 945-949.	1.3	25
27	Sesquiterpene derivatives from marine sponge Smenospongia cerebriformis and their anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1525-1529.	2.2	25
28	A new iridoid and effect on the rat aortic vascular smooth muscle cell proliferation of isolated compounds from Buddleja officinalis. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3462-3466.	2.2	24
29	A New Monoterpenoid Glycoside from Myrica esculenta and the Inhibition of Angiotensin I-Converting Enzyme. Chemical and Pharmaceutical Bulletin, 2010, 58, 1408-1410.	1.3	23
30	Anti-inflammatory and PPAR Transactivational Effects of Components from the Stem Bark of <i>Ginkgo biloba</i> . Journal of Agricultural and Food Chemistry, 2012, 60, 2815-2824.	5.2	23
31	Inhibition of Nuclear Transcription Factor-l̂ºB and Activation of Peroxisome Proliferator-Activated Receptors in HepG2 Cells by Cucurbitane-Type Triterpene Glycosides from Momordica charantia. Journal of Medicinal Food, 2012, 15, 369-377.	1.5	23
32	Anti-inflammatory coumarins from <i>Paramignya trimera</i> . Pharmaceutical Biology, 2017, 55, 1195-1201.	2.9	23
33	Structure–activity relationship of lupane-triterpene glycosides from Acanthopanax koreanum on spleen lymphocyte IL-2 and IFN-I³. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4927-4931.	2.2	22
34	Effect of triterpenes and triterpene saponins from the stem bark of Kalopanax pictus on the transactivational activities of three PPAR subtypes. Carbohydrate Research, 2011, 346, 2567-2575.	2.3	22
35	Antiâ€Inflammatory and PPAR Transactivational Properties of Flavonoids from the Roots of <i>Sophora flavescens</i> . Phytotherapy Research, 2013, 27, 1300-1307.	5.8	22
36	Muurolaneâ€ <i>type</i> sesquiterpenes from marine sponge <i>Dysidea cinerea</i> . Magnetic Resonance in Chemistry, 2014, 52, 51-56.	1.9	22

#	Article	IF	CITATIONS
37	Chemical constituents of the <i>Annona glabra</i> fruit and their cytotoxic activity. Pharmaceutical Biology, 2015, 53, 1602-1607.	2.9	22
38	A new naphthoquinone analogue and antiviral constituents from the root of <i>Rhinacanthus nasutus</i> . Natural Product Research, 2019, 33, 360-366.	1.8	22
39	Cytotoxic oleane-type triterpene saponins from Glochidion eriocarpum. Archives of Pharmacal Research, 2012, 35, 19-26.	6.3	21
40	Oleanane- type saponins from Glochidion glomerulatum and their cytotoxic activities. Phytochemistry, 2015, 116, 213-220.	2.9	21
41	Chemical constituents of Miliusa balansae leaves and inhibition of nitric oxide production in lipopolysaccharide-induced RAW 264.7 cells. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3859-3863.	2.2	21
42	Inhibition of soluble epoxide hydrolase activity by compounds isolated from the aerial parts of <i>Glycosmis stenocarpa</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 640-644.	5.2	21
43	Anti-inflammatory activity on LPS-stimulated dendritic cells of lupanetype triterpenoids from the leaves of Acanthopanax koreanum. Archives of Pharmacal Research, 2011, 34, 1593-1598.	6.3	20
44	Soluble Epoxide Hydrolase Inhibitory Activity of Selaginellin Derivatives from Selaginella tamariscina. Molecules, 2015, 20, 21405-21414.	3.8	20
45	Chemical constituents of Triticum aestivum and their effects on adipogenic differentiation of 3T3-L1 preadipocytes. Archives of Pharmacal Research, 2015, 38, 1011-1018.	6.3	20
46	New ent-kauranes from the fruits of Annona glabra and their inhibitory nitric oxide production in LPS-stimulated RAW264.7 macrophages. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 254-258.	2.2	20
47	The Antiâ€Osteoporosis and Antioxidant Activities of Chemical Constituents from <i>Chrysanthemum indicum</i> Flowers. Phytotherapy Research, 2015, 29, 540-548.	5.8	19
48	Alkylphloroglucinol derivatives and triterpenoids with soluble epoxide hydrolase inhibitory activity from Callistemon citrinus. Fìtoterapìâ, 2016, 109, 39-44.	2.2	19
49	Pregnane glycosides from <i>Gymnema inodorum</i> and their α-glucosidase inhibitory activity. Natural Product Research, 2021, 35, 2157-2163.	1.8	19
50	Chemical Constituents of the Ficus elastica Leaves and Their Antioxidant Activities. Bulletin of the Korean Chemical Society, 2012, 33, 3461-3464.	1.9	19
51	Phenylpropanoids from the leaves of <i>Acanthopanax koreanum</i> and their antioxidant activity. Journal of Asian Natural Products Research, 2011, 13, 56-61.	1.4	18
52	Inhibitory effect on TNF-α-induced IL-8 secretion in HT-29 cell line by glyceroglycolipids from the leaves of Ficus microcarpa. Archives of Pharmacal Research, 2012, 35, 2135-2142.	6.3	18
53	In vitro evaluation of the antioxidant and cytotoxic activities of constituents of the mangrove Lumnitzera racemosa Willd Archives of Pharmacal Research, 2015, 38, 446-455.	6.3	18
54	Plantagiolides I and J, Two New Withanolide Glucosides from <i>Tacca plantaginea</i> with Nuclear Factor-kappaB Inhibitory and Peroxisome Proliferator-Activated Receptor Transactivational Activities. Chemical and Pharmaceutical Bulletin, 2012, 60, 1494-1501.	1.3	17

#	Article	IF	CITATIONS
55	Chemical Components from <i>Phaeanthus vietnamensis</i> and Their Inhibitory <scp>NO</scp> Production in <scp>BV</scp> 2 Cells. Chemistry and Biodiversity, 2017, 14, e1700013.	2.1	17
56	NF-κB Activation and PPAR Transactivational Effects of a New Aliphatic Acid Amide from Pericarps of Zanthoxylum piperitum. Bulletin of the Korean Chemical Society, 2014, 35, 2361-2366.	1.9	17
57	Phenylpropanoid glycosides from Heterosmilax erythrantha and their antioxidant activity. Archives of Pharmacal Research, 2009, 32, 1373-1377.	6.3	16
58	Synthesis of novel derivatives of murrayafoline A and their inhibitory effect on LPS-stimulated production of pro-inflammatory cytokines in bone marrow-derived dendritic cells. Archives of Pharmacal Research, 2013, 36, 832-839.	6.3	16
59	Pyrrole and furan oligoglycosides from the starfish Asterina batheri and their inhibitory effect on the production of pro-inflammatory cytokines in lipopolysaccharide-stimulated bone marrow-derived dendritic cells. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1823-1827.	2.2	16
60	Vasorelaxing Activity of Two Coumarins from <i>Murraya paniculata</i> Leaves. Biological and Pharmaceutical Bulletin, 2014, 37, 694-697.	1.4	16
61	Chemical constituents from Kandelia candel with their inhibitory effects on pro-inflammatory cytokines production in LPS-stimulated bone marrow-derived dendritic cells (BMDCs). Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1412-1416.	2.2	16
62	Steroidal saponins from Datura metel. Steroids, 2017, 121, 1-9.	1.8	15
63	Chemical constituents from <i>Schisandra sphenanthera</i> and their cytotoxic activity. Natural Product Research, 2021, 35, 3360-3369.	1.8	14
64	Macrocyclic <i>bis</i> -quinolizidine alkaloids from <i>Xestospongia muta</i> . Natural Product Research, 2019, 33, 400-406.	1.8	14
65	Inhibition of NF-κB transcriptional activation in HepG2 cells by diterpenoids from the soft coral Sinularia maxima. Archives of Pharmacal Research, 2014, 37, 706-712.	6.3	13
66	New naphthalene derivatives and isoquinoline alkaloids from Ancistrocladus cochinchinensis with their anti-proliferative activity on human cancer cells. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3913-3917.	2.2	13
67	New Lignans from <i>Antidesma hainanensis</i> Inhibit NO Production in BV2 Microglial Cells. Chemical and Pharmaceutical Bulletin, 2016, 64, 1707-1712.	1.3	13
68	Five New Pregnane Glycosides from Gymnema sylvestre and Their α-Glucosidase and α-Amylase Inhibitory Activities. Molecules, 2020, 25, 2525.	3.8	13
69	Inhibitory activity of Plantago major L. on angiotensin I-converting enzyme. Archives of Pharmacal Research, 2011, 34, 419-423.	6.3	12
70	Naphtoquinones and Sesquiterpene Cyclopentenones from the Sponge <i>Smenospongia cerebriformis</i> with Their Cytotoxic Activity. Chemical and Pharmaceutical Bulletin, 2017, 65, 589-592.	1.3	12
71	Labdane-type diterpenoids from Vitex limonifolia and their antivirus activities. Journal of Natural Medicines, 2018, 72, 290-297.	2.3	12
72	Guaianolide sesquiterpenes and benzoate esters from the aerial parts of Siegesbeckia orientalis L. and their xanthine oxidase inhibitory activity. Phytochemistry, 2021, 190, 112889.	2.9	12

#	Article	IF	CITATIONS
73	Cucurbitaneâ€ŧype triterpene glycosides from the fruits of <i>Momordica charantia</i> . Magnetic Resonance in Chemistry, 2010, 48, 392-396.	1.9	11
74	Two new guaiane sesquiterpenes from Datura metel L. with anti-inflammatory activity. Phytochemistry Letters, 2017, 19, 231-236.	1.2	11
75	Studies on the acetylation and NMR reassignment of indirubin derivatives. Natural Product Research, 2010, 24, 99-105.	1.8	10
76	ldentification of six new lupane-type triterpenoids from Acanthopanax koreanum leaves and their tyrosinase inhibitory activities. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1061-1067.	2.2	10
77	Prenylated isoflavones from <i>Cudrania tricuspidata</i> inhibit NO production in RAW 264.7 macrophages and suppress HL-60 cells proliferation. Journal of Asian Natural Products Research, 2017, 19, 510-518.	1.4	10
78	Antioxidant and Anti-Osteoporosis Activities of Chemical Constituents of the Stems of Zanthoxylum piperitum. Molecules, 2018, 23, 457.	3.8	10
79	Oleanane-type triterpene saponins from <i>Aralia armata</i> leaves and their cytotoxic activity. Natural Product Research, 2022, 36, 142-149.	1.8	10
80	α-Glucosidase Inhibitors from the Roots of Sophora flavescens. Bulletin of the Korean Chemical Society, 2012, 33, 1791-1793.	1.9	10
81	An evaluation of the RNase H inhibitory effects of Vietnamese medicinal plant extracts and natural compounds. Pharmaceutical Biology, 2011, 49, 1046-1051.	2.9	9
82	Evaluation of the anti-osteoporosis and antioxidant activities of phenolic compounds from Euphorbia maculata. Journal of the Korean Society for Applied Biological Chemistry, 2014, 57, 573-579.	0.9	9
83	Soluble Epoxide Hydrolase Inhibitory Constituents from <i>Selaginella tamariscina</i> . Bulletin of the Korean Chemical Society, 2015, 36, 300-304.	1.9	9
84	Megastigmane Glycosides from <i>DocyniaÂindica</i> and Their Antiâ€inflammatory Activities. Helvetica Chimica Acta, 2016, 99, 681-686.	1.6	9
85	Prenylated flavonoids and other constituents from Macaranga indica. Natural Product Research, 2019, 35, 1-8.	1.8	9
86	Enantiomeric chromene derivatives with anticancer effects from Mallotus apelta. Bioorganic Chemistry, 2020, 104, 104268.	4.1	9
87	Four new sucrose diesters of substituted truxinic acids from Trigonostemon honbaensis with their anoctamin-1 inhibitory activity. Bioorganic Chemistry, 2020, 102, 104058.	4.1	9
88	Four new aaptamine alkaloids from marine sponge <i>Aaptos aaptos</i> . Natural Product Research, 2022, 36, 5022-5031.	1.8	9
89	Inhibitory effects of oleanane-type triterpenes and saponins from the stem bark of Kalopanax pictus on LPS-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Archives of Pharmacal Research, 2013, 36, 327-334.	6.3	8
90	Cytotoxic Compounds from Brucea mollis. Scientia Pharmaceutica, 2013, 81, 819-831.	2.0	8

#	Article	IF	CITATIONS
91	A new saponin from Acanthopanax koreanum with anti-inflammatory activity. Archives of Pharmacal Research, 2017, 40, 311-317.	6.3	8
92	The chemical constituents and biological activity of some sponges in Northern Vietnam: A review. Vietnam Journal of Chemistry, 2019, 57, 261-271.	0.8	8
93	Three new muurolane-type sesquiterpene glycosides from the whole plants of <i>Balanophora fungosa</i> subsp. <i>indica</i> . Natural Product Research, 2020, 34, 2964-2970.	1.8	8
94	Triterpenoid glycosides from the rhizomes of <i>Allium ascalonicum</i> and their anoctamin-1 inhibitory activity. Natural Product Research, 2021, 35, 4338-4346.	1.8	8
95	Diarylheptanoid glycosides from Tacca plantaginea and their effects on NF-κB activation and PPAR transcriptional activity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6681-6687.	2.2	7
96	Cytotoxic sesquiterpene glucosides from Fissistigma pallens. Phytochemistry, 2020, 172, 112255.	2.9	7
97	Cytotoxic Constituents from Vietnamese Marine Sponge <i>Haliclona oculata (Linnaeus, 1759)</i> . Letters in Organic Chemistry, 2015, 12, 708-712.	0.5	7
98	A new flavan-3-ol and the anti-inflammatory effect of flavonoids from the fruit peels ofWisteria floribunda. Journal of Asian Natural Products Research, 2011, 13, 1061-1068.	1.4	6
99	¹ H and ¹³ C NMR assignments of sesquiterpenes from <scp><i>Dysidea fragilis</i></scp> . Magnetic Resonance in Chemistry, 2015, 53, 1057-1060.	1.9	6
100	Two New Steroidal Alkaloid Saponins from the Whole Plants of <i>Solanum nigrum</i> . Natural Product Communications, 2018, 13, 1934578X1801301.	0.5	6
101	Two new norlignans from the aerial parts of <i>Pouzolzia sanguinea</i> (Blume) Merr. Natural Product Research, 2022, 36, 157-164.	1.8	6
102	Biscembranoids from the Marine Sponge <i>Petrosia Nigricans</i> . Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	5
103	Tirucallane Glycoside from the Leaves of Antidesma bunius and Inhibitory NO Production in BV2 Cells and RAW264.7 Macrophages. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	5
104	Spirostanol saponins from Tacca vietnamensis and their anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3780-3784.	2.2	5
105	New Acetylated Terpenoids from Sponge <i>Rhabdastrella providentiae</i> Inhibit NO Production in LPS Stimulated BV2 Cells. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	5
106	Rhabdaprovidines D–G, Four New 6,6,5-Tricyclic Terpenoids from the Vietnamese Sponge Rhabdastrella providentiae. Natural Product Communications, 2018, 13, 1934578X1801301.	0.5	5
107	Constituents from Ircinia echinata and their Antiproliferative Effect on Six Human Cancer Cell Strains. Letters in Organic Chemistry, 2017, 14, .	0.5	5
108	Sesquiterpene Quinones and Diterpenes from Smenospongia cerebriformis and Their Cytotoxic Activity. Natural Product Communications, 2017, 12, 477-478.	0.5	5

#	Article	IF	CITATIONS
109	Rhabdastrenones A–D from the sponge <i>Rhabdastrella globostellata</i> . RSC Advances, 2022, 12, 10646-10652.	3.6	5
110	Buddlejasaponins from the flowers of Buddleja officinalis. Chemistry of Natural Compounds, 2011, 47, 467-469.	0.8	4
111	Anti-influenza Sesquiterpene from the Roots of Reynoutria japonica. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	4
112	Alterations of contractions and L-type Ca2+ currents by murrayafoline-A in rat ventricular myocytes. European Journal of Pharmacology, 2014, 740, 81-87.	3.5	4
113	Bis-sesquiterpene from the Marine Sponge Dysidea fragilis. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	4
114	Saurobacciosides A - C: three new glycosides from Sauropus bacciformis with their cytotoxic activity. Natural Product Research, 2021, , 1-15.	1.8	4
115	Hippotulosas A-D: four new sesterterpenes from marine sponge <i>Hippospongia fistulosa</i> Lendenfeld, 1889. Natural Product Research, 2022, 36, 5247-5254.	1.8	4
116	New sesquiterpene and flavone arabinofuranoside derivative from the leaves of <i>Fissistigma bicolor</i> . Natural Product Research, 2023, 37, 305-312.	1.8	4
117	Anti-inflammatory and PPAR Subtypes Transactivational Activities of Phenolics and Lignans from the Stem Bark of Kalopanax pictus. Bulletin of the Korean Chemical Society, 2011, 32, 4049-4054.	1.9	4
118	Inhibitory Effects of Indirubin Derivatives on the Growth of HL-60 Leukemia Cells. Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	3
119	Chemical Constituents of <i>Vitex trifolia</i> Leaves. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	3
120	Iridoid Glycosides and Phenolic Glycosides from Buddleja asiatica with Anti-inflammatory and Cytoprotective Activities. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	3
121	Secondary metabolites from the marine-derived fungus <i>Paraconiothyrium</i> sp. VK-13. Vietnam Journal of Chemistry, 2018, 56, 434-439.	0.8	3
122	Three new flavonol glycosides from Fissistigma pallens. Bioscience, Biotechnology and Biochemistry, 2019, 83, 2177-2182.	1.3	3
123	Three New Constituents From the Parasitic Plant Balanophora laxiflora. Natural Product Communications, 2019, 14, 1934578X1984995.	0.5	3
124	Sesquiterpenes from <i>Fissistigma pallens</i> (Fin. & Gagn.) Merr Vietnam Journal of Chemistry, 2019, 57, 552-557.	0.8	3
125	A New Phenylethanoid Glycoside From the Leaves of Rosmarinus officinalis With Nitric Oxide Inhibitory Activity. Natural Product Communications, 2020, 15, 1934578X2096908.	0.5	3
126	Four new pregnane glycosides fromGymnema latifoliumand theirα-glucosidase andα-amylase inhibitory activities. Natural Product Research, 2020, 35, 1-8.	1.8	3

#	Article	IF	CITATIONS
127	New merosesquiterpenes from the Vietnamese sponge Hippospongia fistulosa and their cytotoxic activity. Phytochemistry Letters, 2021, 44, 115-119.	1.2	3
128	New nitric oxide inhibitory p-coumaroyl flavone glycosides from Fissistigma bicolor. Phytochemistry Letters, 2021, 44, 169-172.	1.2	3
129	New butenolide and pentenolide from Dysidea cinerea. Natural Product Communications, 2013, 8, 1751-2.	0.5	3
130	Triterpene Saponins from the Sea Cucumber Stichopus chloronotus. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	2
131	Oleananeâ€∢i>type Saponins from <i>Glochidion hirsutum</i> and Their Cytotoxic Activities. Chemistry and Biodiversity, 2017, 14, e1600445.	2.1	2
132	Sesquiterpene Quinones and Diterpenes from Smenospongia cerebriformis and Their Cytotoxic Activity. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	2
133	New Alkaloids and Anti-inflammatory Constituents from the Leaves of Antidesma ghaesembilla. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	2
134	Polyoxygenated polyketides from the marine-derived fungus Aspergillus micronesiensis. Vietnam Journal of Chemistry, 2019, 57, 654-660.	0.8	2
135	Pregnane glycosides from <i>Gymnema sylvestre</i> . Vietnam Journal of Chemistry, 2019, 57, 208-212.	0.8	2
136	Study on water soluble constituentsfrom <i>Gomphrena celoisiodes</i> . Vietnam Journal of Chemistry, 2019, 57, 229-233.	0.8	2
137	New lupane-type and ursane-type triterpene saponins from the leaves of <i>Trevesia palmata</i> . Natural Product Research, 2021, 35, 3285-3292.	1.8	2
138	Cannadicas A and B: two new oligosaccharide esters from the roots of <i>Canna indica</i> L. Natural Product Research, 2022, 36, 3559-3566.	1.8	2
139	Dihydrostilbene glycosides from <i>Camellia sinensis</i> var. assamica and their cytotoxic activity. Natural Product Research, 2022, 36, 3931-3937.	1.8	2
140	Four new triterpene glycosides from the aerial parts of Chenopodium album and their cytotoxic activity. Phytochemistry Letters, 2021, 44, 7-13.	1.2	2
141	Chemical Components from the Fruit Peels of Wisteria floribunda and their Effects on Rat Aortic Vascular Smooth Muscle Cells. Bulletin of the Korean Chemical Society, 2011, 32, 2079-2082.	1.9	2
142	Damarane- <i>type</i> Saponins from <i>Gynostemma Longipes</i> and their Cytotoxic Activity. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	1
143	¹ H and ¹³ C NMR assignments of tricanguinas A–B, coumarin monoterpenes from <i>Trichosanthes anguina L</i> . Magnetic Resonance in Chemistry, 2015, 53, 178-180.	1.9	1
144	New Phenolic Glycosides from <i>Physalis angulata</i> . Natural Product Communications, 2016, 11, 1934578X1601101.	0.5	1

#	Article	IF	CITATIONS
145	Phenolic Components from the Aerial Parts of Agrimonia pilosa. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	1
146	Proliferation Effects on Hair Growth of Compounds Isolated from the Bark of Dalbergia oliveri. Natural Product Communications, 2017, 12, 1934578X1701201.	0.5	1
147	A New Picrotoxane Sesquiterpene Glucoside from Dendrobium nobile. Natural Product Communications, 2017, 12, 1934578X1701201.	0.5	1
148	Steroidal sterols from <i>Allium ascalonicum</i> . Vietnam Journal of Chemistry, 2019, 57, 777-783.	0.8	1
149	New 3,4-seco-diterpene and coumarin derivative from the leaves of Trigonostemon flavidus Gagnep. Natural Product Research, 2020, , 1-12.	1.8	1
150	Flavonoids from Camellia sinensis. Vietnam Journal of Chemistry, 2020, 58, 40-44.	0.8	1
151	Chemical Constituents of the Marine Sponge Aaptos aaptos (Schmidt, 1864) and Their Cytotoxic Activity. Natural Product Communications, 2021, 16, 1934578X2199334.	0.5	1
152	A New β-Carboline Alkaloid From the Aerial Part of Hedyotis capitellata. Natural Product Communications, 2021, 16, 1934578X2110477.	0.5	1
153	13(18)-Ene ursan glycosides from <i>Allium ascalonicum</i> . Vietnam Journal of Chemistry, 2020, 58, 50-56.	0.8	1
154	Halipanasterol, a New Sterol Isolated From the Marine Sponge <i>Halichondria panicea</i> . Natural Product Communications, 2022, 17, 1934578X2210880.	0.5	1
155	Strychnovanosides A - C, Three New Lignan Glycosides from <i>Strychnos vanprukii</i> . Natural Product Communications, 2022, 17, 1934578X2210961.	0.5	1
156	New Butenolide and Pentenolide from <i>Dysidea cinerea</i> . Natural Product Communications, 2013, 8, 1934578X1300801.	0.5	0
157	Bioactive Secondary Metabolites from the Aerial Parts of <i>Buddleja macrostachya</i> . Natural Product Communications, 2017, 12, 1934578X1701201.	0.5	0
158	Two New Steroidal Saponins from <i>Solanum procumbens</i> . Natural Product Communications, 2018, 13, 1934578X1801301.	0.5	0
159	New Acetylated Saponins from the Leaves of Trevesia palmata. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	0
160	Phenolic glycosides from the aerial parts of <i>Buddleja macrostachya</i> Benth Vietnam Journal of Chemistry, 2018, 56, 466-472.	0.8	0
161	Oleananesaponins from <i>Gymnema sylvestre</i> . Vietnam Journal of Chemistry, 2019, 57, 39-45.	0.8	0
162	Araliachinoside A: A New Triterpene Glycoside From Aralia chinensis Leaves. Natural Product Communications, 2020, 15, 1934578X2095275.	0.5	0

#	Article	IF	CITATIONS
163	New Truxinic and Truxillic Acid Sucrose Diesters From the Leaves of Trigonostemon honbaensis. Natural Product Communications, 2021, 16, 1934578X2199914.	0.5	0
164	Panabipinoside A and panabipinoside B, two new oleanane triterpenoid saponins from the roots of <i>Panax bipinnatifidus</i> with nitric oxide inhibitory activity. Journal of Chemical Research, 2021, 45, 850-855.	1.3	0
165	Five new <i>seco</i> â€labdaneâ€type diterpenoids from <i>Caesalpinia latisiliqua</i> . Magnetic Resonance in Chemistry, 2022, 60, 469-475.	1.9	0
166	Charantoside L, A New Cucurbitane-Type Glycoside from <i>Momordica charantia</i> L. with <i>α</i>-Glucosidase Inhibitory Activities . Natural Product Communications, 2022, 17, 1934578X2110689.	0.5	0
167	Lignans and Other Compounds From the Roots of <i>Pandanus tonkinensis</i> and Their Lipid Peroxidation Inhibitory Activity. Natural Product Communications, 2022, 17, 1934578X2210883.	0.5	0
168	20(22) <i>Z</i> and 20(22) <i>E</i> Dammarane Saponins From the Roots of <i>Panax pseudoginseng</i> Wall Natural Product Communications, 2022, 17, 1934578X2210990.	0.5	0