Debora Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/336961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. Journal of Colloid and Interface Science, 2018, 515, 101-108.	5.0	112
2	Electrochemical oxidation of o-aminophenol in aqueous acidic medium: formation of film and soluble products. Journal of Electroanalytical Chemistry, 2000, 487, 90-99.	1.9	88
3	Conducting blends of soluble polyurethane and poly(o-methoxyaniline). Synthetic Metals, 1995, 74, 197-199.	2.1	69
4	Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9. Materials Science and Engineering C, 2019, 99, 1502-1508.	3.8	62
5	Rapid Conversion of Poly(p-phenylenevinylene) Films at Low Temperatures. Advanced Materials, 2000, 12, 69-74.	11.1	54
6	Electrocatalytic properties and electrochemical stability of polyaniline and polyaniline modified with platinum nanoparticles in formaldehyde medium. Thin Solid Films, 2004, 461, 243-249.	0.8	53
7	Poly (o-methoxy aniline): solubility, deprotonation-protonation process in solution and cast films. Synthetic Metals, 1997, 90, 5-11.	2.1	47
8	Fundamentals and applications of spectroscopic ellipsometry. Quimica Nova, 2002, 25, 794-800.	0.3	45
9	The effect of the layer structure on the activity of immobilized enzymes in ultrathin films. Journal of Colloid and Interface Science, 2006, 303, 326-331.	5.0	44
10	Fully-printed electrochemical sensors made with flexible screen-printed electrodes modified by roll-to-roll slot-die coating. Biosensors and Bioelectronics, 2020, 165, 112428.	5.3	44
11	Amperometric urea biosensors based on the entrapment of urease in polypyrrole films. Reactive and Functional Polymers, 2012, 72, 148-152.	2.0	37
12	Highly Oriented Langmuirâ^'Blodgett Films of Poly(p-phenylenevinylene) Using a Long Chain Sulfonic Counterion. Macromolecules, 2000, 33, 5886-5890.	2.2	36
13	Studies on the electrochemical response of poly(o-methoxyaniline) films. Electrochimica Acta, 1994, 39, 2271-2275.	2.6	30
14	Screen-printed electrodes modified with carbon black and polyelectrolyte films for determination of cancer marker carbohydrate antigen 19-9. Mikrochimica Acta, 2020, 187, 417.	2.5	28
15	Solid state electrochromic display based on polymer electrode-polymer electrolyte interface. Electrochimica Acta, 1992, 37, 1653-1656.	2.6	26
16	Optical, electrochemical and electrogravimetric behavior of poly(1-methoxy-4-(2-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV) films. Electrochimica Acta, 2007, 52, 4299-4304.	2.6	26
17	Control of catalytic activity of glucose oxidase in layer-by-layer films of chitosan and glucose oxidase. Materials Science and Engineering C, 2007, 27, 1108-1110.	3.8	25
18	Chloroform-soluble poly(o-methoxyaniline) for ultra-thin film fabrication. Thin Solid Films, 1992, 221, 5-8.	0.8	24

DEBORA GONçALVES

#	Article	IF	CITATIONS
19	Electrochromism of poly(o-methoxyaniline) films electrochemically obtained in aqueous medium. Journal of Electroanalytical Chemistry, 1994, 371, 267-271.	1.9	24
20	Electrochemical response of poly(o-ethoxyaniline) films produced by different techniques. Electrochimica Acta, 1995, 40, 1851-1855.	2.6	24
21	Polypyrrole/phytase amperometric biosensors for the determination of phytic acid in standard solutions. Sensors and Actuators B: Chemical, 2011, 160, 222-226.	4.0	21
22	Determination of p53 biomarker using an electrochemical immunoassay based on layer-by-layer films with NiFe2O4 nanoparticles. Mikrochimica Acta, 2020, 187, 619.	2.5	21
23	Electrochromic and redox properties of Langmuir–Blodgett films of ytterbium bisphthalocyanine. Synthetic Metals, 2001, 124, 351-356.	2.1	20
24	Electrical and optical properties of light emitting electrochemical cells using MEH-PPV/PEO:lithium-salt blends. Synthetic Metals, 2001, 121, 1697-1698.	2.1	19
25	Synthesis and characterization of poly-o-toluidine: kinetic and structural aspects. Materials Research, 2005, 8, 5-10.	0.6	19
26	Wettability, Shrinkage and Color Changes of Araucaria angustifolia After Heating Treatment. Materials Research, 2010, 13, 351-354.	0.6	18
27	Thermal behavior and electrical conductivity of poly(vinyl pyridine)/copper complexes. Advances in Polymer Technology, 2000, 19, 113-119.	0.8	16
28	Preparation and characterization of cellulose paper/polypyrrole/bromophenol blue composites for disposable optical sensors. Open Chemistry, 2016, 14, 404-411.	1.0	16
29	Detection of SARS-CoV-2 virus via dynamic light scattering using antibody-gold nanoparticle bioconjugates against viral spike protein. Talanta, 2022, 243, 123355.	2.9	16
30	Self-assembly of poly(p-phenylene vinylene) using long chain counter-ion: a new process for fabrication of multilayer thin films heterostructures. Synthetic Metals, 2001, 121, 1447-1448.	2.1	15
31	Electroactivity in poly(o-alkoxyaniline) Langmuir-Blodgett films. Thin Solid Films, 1994, 243, 544-546.	0.8	13
32	Implications of using m-cresol in the Langmuir–Blodgett processing of polyaniline. Thin Solid Films, 1998, 327-329, 60-64.	0.8	12
33	Spectroscopic, electrochemical, and microgravimetric studies on palladium phthalocyanine films. Journal of Porphyrins and Phthalocyanines, 2005, 09, 16-21.	0.4	12
34	Langmuir-blodgett films of poly (o-anisidine). Synthetic Metals, 1993, 57, 3819-3823.	2.1	11
35	A comparative study of m-cresol treated polyaniline and Langmuir Blodgett films. Synthetic Metals, 1999, 101, 691.	2.1	11
36	Color variations in CIELAB coordinates for softwoods and hardwoods under the influence of artificial and natural weathering. Journal of Building Engineering, 2021, 35, 101965.	1.6	11

DEBORA GONçALVES

#	Article	IF	CITATIONS
37	Reversible Electrochromical Response of Thin MEH-PPV Films. Molecular Crystals and Liquid Crystals, 2002, 374, 469-474.	0.4	10
38	Circular dichroism and circularly polarized luminescence of highly oriented Langmuir-Blodgett films of poly(p-phenylene vinylene). Synthetic Metals, 2001, 119, 207-208.	2.1	9
39	A Study of Gold-Coated Glass as Electrodes for Electropolymerization of 3-Methylthiophene. Langmuir, 2001, 17, 5031-5038.	1.6	9
40	Wettability, surface free energy and cellulose crystallinity for pine wood (Pinus sp.) modified with chili pepper extracts as natural preservatives. Cellulose, 2018, 25, 6151-6160.	2.4	9
41	Morphology of 2,5-substituted poly(p-phenylene vinylene) with oligo(ethylene oxide) side chains /PEO-salt blends. Synthetic Metals, 2001, 119, 361-362.	2.1	8
42	An electrical study of a thin film poly(o-methoxyaniline) field effect transitor. Synthetic Metals, 2001, 121, 1687-1688.	2.1	8
43	Electrochemical synthesis of polypyrrole-azo dyes composite films. Synthetic Metals, 2003, 135-136, 161-162.	2.1	8
44	Controlling the absorption and emission properties of polyparaphenylenevinylene films. Journal of Non-Crystalline Solids, 2008, 354, 4856-4859.	1.5	8
45	Electrochemically Prepared Polypyrroleâ€2â€Carboxylic Acid Films: Synthesis Protocols and Studies on Biosensors. Electroanalysis, 2013, 25, 741-749.	1.5	8
46	Theoretical and experimental studies on the electronic, optical, and structural properties of poly-pyrrole-2-carboxylic acid films. Chemical Physics, 2013, 425, 91-95.	0.9	8
47	Electrosynthesis and optical characterization of poly(p-phenylene), polypyrrole and poly(p-phenylene)-polypyrrole films. Materials Research, 2014, 17, 332-337.	0.6	8
48	Voltammetric sensing of tryptophanÂin dark chocolate bars, skimmed milk and urine samples in the presence of dopamine and caffeine. Journal of Applied Electrochemistry, 2022, 52, 1249-1257.	1.5	8
49	Experimental and simulated transmittance versus potential curves for poly(o-methoxyaniline) films. Synthetic Metals, 1996, 83, 147-151.	2.1	7
50	Low conversion temperatures of poly(p-phenylene vinylene) films using a long chain sulfonic counter-ion. Synthetic Metals, 2001, 119, 629-630.	2.1	7
51	Modeling Adsorption Processes of Poly- <i>p</i> -phenylenevinylene Precursor and Sodium Acid Dodecylbenzenesulfonate onto Layer-by-Layer Films Using a Langmuir-type Metastable Equilibrium Model. Langmuir, 2009, 25, 2166-2171.	1.6	7
52	The Protective Nature of Dodecanethiol Self-Assembled Monolayers Deposited on Au for the Electropolymerization of 3-Methylthiophene. Electroanalysis, 2003, 15, 652-658.	1.5	6
53	Interaction of capsaicinoids with cell membrane models does not correlate with pungency of peppers. Chemical Physics Letters, 2017, 673, 78-83.	1.2	6
54	Analytical Detection of Pesticides, Pollutants, and Pharmaceutical Waste in the Environment. Environmental Chemistry for A Sustainable World, 2020, , 87-129.	0.3	6

DEBORA GONçALVES

#	Article	IF	CITATIONS
55	Electrosynthesis and Optical Properties of Poly(p -phenylene) and Poly(p -phenylene-pyrrole) Films. Molecular Crystals and Liquid Crystals, 2002, 374, 493-496.	0.4	5
56	Preparation and characterization of Cd2Nb2O7 thin films on Si substrates. Journal of Physics and Chemistry of Solids, 2009, 70, 234-237.	1.9	5
57	Cambios en la mojabilidad en superficies de maderas tratadas térmicamente: Angulo de contacto y energÃa libre superficial. Maderas: Ciencia Y Tecnologia, 2016, , 0-0.	0.7	5
58	On the use of capsaicin as a natural preservative against fungal attack on Pinus sp. and Hymenaea sp. woods. Materials Research, 2014, 17, 271-274.	0.6	5
59	Photo-oxidation Phenomenon of MH-PPV Films Studied by Ellipsometry and Infrared Spectroscopy. Molecular Crystals and Liquid Crystals, 2002, 374, 457-462.	0.4	4
60	Immobilization of Tyrosinase from Avocado Crude Extract in Polypyrrole Films for Inhibitive Detection of Benzoic Acid. Chemosensors, 2014, 2, 182-192.	1.8	4
61	Liposome-Based Biosensors Using Phytase Immobilized on Polypyrrole Films for Phytic Acid Determination. Bulletin of the Chemical Society of Japan, 2019, 92, 847-851.	2.0	3
62	Analysis of the absorption and emission spectra of poly(p-phenylene vinylene) films thermally converted at a relatively low temperature. Journal of Non-Crystalline Solids, 2006, 352, 3484-3487.	1.5	2
63	Electrosynthesis and properties of poly(3-methylthiophene-pyrrole) composites. Molecular Crystals and Liquid Crystals, 2016, 625, 165-172.	0.4	2
64	Wettability and surface free energy on heat-treated Pinus sp. and Erisma sp. woods. Scientia Forestalis/Forest Sciences, 2017, 45, .	0.2	2
65	Emission of Circularly Polarised Light in Highly Oriented Poly(p -Phenylene Vinylene) Langmuir-Blodgett Films. Molecular Crystals and Liquid Crystals, 2002, 374, 433-438.	0.4	1
66	Immobilization of polyphenol oxidase on polypyrrole films for application in biosensors. , 0, , .		1
67	Precipitation and surface polymerizations of aniline at different aniline:oxidizer molar ratios. E-Polymers, 2007, 7, .	1.3	1
68	Surface properties and crystallinity of Pinus taeda and Hymenaea stilbocarpa treated at low temperatures in different grain directions. Journal of the Indian Academy of Wood Science, 2020, 17, 46-53.	0.3	1
69	Langmuir-Blodgett films from conjugated polymers. , 0, , .		0
70	Optical Activity and Order in Luminescent Langmuir-Blodgett Poly(ϕPhenylene Vinylene) Films. Materials Research Society Symposia Proceedings, 1999, 560, 309.	0.1	0
71	Generation of Circularly Polarized Light of Highly Oriented Poly(P-Phenylene Vinylene). Materials Research Society Symposia Proceedings, 2000, 660, 1.	0.1	0
72	Generation of Circularly Polarized Light of Highly Oriented Poly(P-Phenylene Vinylene). Materials Research Society Symposia Proceedings, 2000, 660, .	0.1	0

#	Article	IF	CITATIONS
73	Surface Characterization of Absorbing Polymer Films Deposited on Transparent Glasses. E-Polymers, 2008, 8, .	1.3	0
74	Spectroscopic ellipsometry as a complementary tool for studying luminescent polymers: Poly(p-phenylenevinylene) as a particular case. Materials Chemistry and Physics, 2013, 141, 973-978.	2.0	0
75	Electrosynthesis of poly(p-phenylene) and poly(p-phenylene/pyrrole) films under controlled humidity. Chemical Papers, 2015, 69, .	1.0	0
76	Atividades de Educação Ambiental: como Minimizar e Lidar com o ResÃduo. Revista De Cultura E Extensão USP, 0, 12, 83.	0.0	0
77	Deterioro y preservación de maderas mediante el uso de preservadores naturales de potencial interés en Brasil. Bosque, 2020, 41, 213-220.	0.1	0