
## Victor Climent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3369291/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nature Energy, 2017, 2, .                                                                                                          | 39.5 | 791       |
| 2  | Thirty years of platinum single crystal electrochemistry. Journal of Solid State Electrochemistry, 2011, 15, 1297-1315.                                                                                                                                 | 2.5  | 204       |
| 3  | Mechanistic studies of the â€`blue' Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for<br>the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2010, 12, 13962.                                                     | 2.8  | 184       |
| 4  | Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the<br>major classes of hydrogenases. Proceedings of the National Academy of Sciences of the United States<br>of America, 2012, 109, 11516-11521.         | 7.1  | 158       |
| 5  | The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosensors and Bioelectronics, 2010, 25, 2167-2171.                                                                         | 10.1 | 154       |
| 6  | New understanding of the nature of OH adsorption on Pt(111) electrodes. Electrochemistry Communications, 2007, 9, 2789-2794.                                                                                                                            | 4.7  | 136       |
| 7  | Dependence of the Potential of Zero Charge of Stepped Platinum (111) Electrodes on the Oriented<br>Step-Edge Density:Â Electrochemical Implications and Comparison with Work Function Behavior.<br>Journal of Physical Chemistry B, 2000, 104, 597-605. | 2.6  | 133       |
| 8  | Towards the understanding of the interfacial pH scale at Pt(1 1 1) electrodes. Electrochimica Acta, 2015, 162, 138-145.                                                                                                                                 | 5.2  | 131       |
| 9  | Thermodynamic Analysis of the Temperature Dependence of OH Adsorption on Pt(111) and Pt(100)<br>Electrodes in Acidic Media in the Absence of Specific Anion Adsorption. Journal of Physical Chemistry<br>B, 2006, 110, 11344-11351.                     | 2.6  | 130       |
| 10 | Potential-Dependent Water Orientation on Pt(111), Pt(100), and Pt(110), As Inferred from Laser-Pulsed<br>Experiments. Electrostatic and Chemical Effects. Journal of Physical Chemistry C, 2009, 113, 9290-9304.                                        | 3.1  | 126       |
| 11 | Selective Catalytic Reduction at Quasi-Perfect Pt(100) Domains: A Universal Low-Temperature Pathway from Nitrite to N <sub>2</sub> . Journal of the American Chemical Society, 2011, 133, 10928-10939.                                                  | 13.7 | 117       |
| 12 | Effect of increasing amount of steps on the potential of zero total charge of Pt(111) electrodes.<br>Electrochimica Acta, 1999, 45, 629-637.                                                                                                            | 5.2  | 111       |
| 13 | Kinetics of Oxygen Reduction on an Epitaxial Film of Palladium on Pt(111)â€,‡. Journal of Physical<br>Chemistry B, 2000, 104, 3116-3120.                                                                                                                | 2.6  | 101       |
| 14 | Formic Acid Oxidation on Shape-Controlled Pt Nanoparticles Studied by Pulsed Voltammetry. Journal of Physical Chemistry C, 2010, 114, 13802-13812.                                                                                                      | 3.1  | 101       |
| 15 | Surface electrochemistry on an epitaxial palladium film on Pt(111): surface microstructure and hydrogen electrode kinetics. Surface Science, 2000, 465, 103-114.                                                                                        | 1.9  | 98        |
| 16 | Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces. Physical<br>Chemistry Chemical Physics, 2010, 12, 8822.                                                                                                         | 2.8  | 98        |
| 17 | Coulostatic Potential Transients Induced by Laser Heating of a Pt(111) Single-Crystal Electrode in<br>Aqueous Acid Solutions. Rate of Hydrogen Adsorption and Potential of Maximum Entropy. Journal of<br>Physical Chemistry B, 2002, 106, 5988-5996.   | 2.6  | 97        |
| 18 | Potential of zero total charge of platinum single crystals: A local approach to stepped surfaces vicinal to Pt(111). Russian Journal of Electrochemistry, 2006, 42, 1145-1160.                                                                          | 0.9  | 96        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Intrinsic Activity and Poisoning Rate for HCOOH Oxidation at Pt(100) and Vicinal Surfaces Containing Monoatomic (111) Steps. ChemPhysChem, 2009, 10, 1922-1926.                                                                                   | 2.1  | 95        |
| 20 | Thermodynamic studies of chloride adsorption at the Pt(111) electrode surface from 0.1 M HClO4 solution. Journal of Electroanalytical Chemistry, 2005, 576, 33-41.                                                                                | 3.8  | 94        |
| 21 | Effect of the Interfacial Water Structure on the Hydrogen Evolution Reaction on Pt(111) Modified with Different Nickel Hydroxide Coverages in Alkaline Media. ACS Applied Materials & amp; Interfaces, 2019, 11, 613-623.                         | 8.0  | 94        |
| 22 | Laser-Induced Potential Transients on a Au(111) Single-Crystal Electrode. Determination of the<br>Potential of Maximum Entropy of Double-Layer Formation. Journal of Physical Chemistry B, 2002, 106,<br>5258-5265.                               | 2.6  | 91        |
| 23 | Potential of zero charge of platinum stepped surfaces: a combined approach of CO charge displacement and N2O reduction. Journal of Electroanalytical Chemistry, 2002, 532, 67-74.                                                                 | 3.8  | 85        |
| 24 | On the different adsorption behavior of bismuth, sulfur, selenium and tellurium on a Pt(775) stepped surface. Electrochemistry Communications, 2000, 2, 636-640.                                                                                  | 4.7  | 82        |
| 25 | Evidence of Water Reorientation on Model Electrocatalytic Surfaces from Nanosecond-Laser-Pulsed Experiments. Journal of the American Chemical Society, 2008, 130, 3824-3833.                                                                      | 13.7 | 80        |
| 26 | Anion adsorption on Pd–Pt(111) electrodes in sulphuric acid solution. Journal of Electroanalytical<br>Chemistry, 2001, 497, 125-138.                                                                                                              | 3.8  | 78        |
| 27 | Thermodynamic approach to the double layer capacity of a Pt(111) electrode in perchloric acid solutions. Electrochimica Acta, 2006, 51, 3787-3793.                                                                                                | 5.2  | 78        |
| 28 | Microelectrode Studies of the Reaction of Superoxide with Carbon Dioxide in Dimethyl Sulfoxide.<br>Journal of Physical Chemistry B, 2001, 105, 10659-10668.                                                                                       | 2.6  | 75        |
| 29 | Electrocatalysis of formic acid and CO oxidation on antimony-modified Pt(111) electrodes.<br>Electrochimica Acta, 1998, 44, 1403-1414.                                                                                                            | 5.2  | 73        |
| 30 | Analysis of temperature effects on hydrogen and OH adsorption on Pt(1 1 1), Pt(1 0 0) and Pt(1 1 0) by means of Gibbs thermodynamics. Journal of Electroanalytical Chemistry, 2010, 649, 69-82.                                                   | 3.8  | 65        |
| 31 | Thermodynamic analysis of (bi)sulphate adsorption on a Pt(111) electrode as a function of pH.<br>Electrochimica Acta, 2008, 53, 6793-6806.                                                                                                        | 5.2  | 62        |
| 32 | Nitric oxide adsorption at Pt(100) electrode surfaces. Electrochimica Acta, 1998, 44, 1077-1090.                                                                                                                                                  | 5.2  | 61        |
| 33 | Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin<br>Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes. Journal of<br>Physical Chemistry C, 2012, 116, 1232-1243. | 3.1  | 61        |
| 34 | Electrochemical reactions of catechol, methylcatechol and dopamine at tetrahedral amorphous carbon (ta-C) thin film electrodes. Diamond and Related Materials, 2015, 59, 30-39.                                                                   | 3.9  | 59        |
| 35 | On the electrochemical behavior of the Pt(100) vicinal surfaces in bromide solutions. Surface<br>Science, 2004, 560, 269-284.                                                                                                                     | 1.9  | 58        |
| 36 | Effect of pH and Alkaline Metal Cations on the Voltammetry of Pt(111) Single Crystal Electrodes in Sulfuric Acid Solution. ChemPhysChem, 2004, 5, 1221-1227.                                                                                      | 2.1  | 58        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | On the global and local values of the potential of zero total charge at well-defined platinum<br>surfaces: stepped and adatom modified surfaces. Journal of Electroanalytical Chemistry, 2004, 568,<br>329-342. | 3.8 | 58        |
| 38 | Elucidation of the Chemical Nature of Adsorbed Species for Pt(111) in H <sub>2</sub> SO <sub>4</sub><br>Solutions by Thermodynamic Analysis. Langmuir, 2010, 26, 12408-12417.                                   | 3.5 | 57        |
| 39 | On the behavior of the Pt(100) and vicinal surfaces in alkaline media. Electrochimica Acta, 2011, 58, 184-192.                                                                                                  | 5.2 | 55        |
| 40 | The role of the surface structure in the oxidation mechanism of methanol. Journal of Electroanalytical Chemistry, 2011, 662, 43-51.                                                                             | 3.8 | 54        |
| 41 | Thermodynamic studies of bromide adsorption at the Pt(111) electrode surface perchloric acid solutions: Comparison with other anions. Journal of Electroanalytical Chemistry, 2006, 591, 149-158.               | 3.8 | 52        |
| 42 | Potential-dependent water orientation on Pt(111) stepped surfaces from laser-pulsed experiments.<br>Electrochimica Acta, 2009, 54, 966-977.                                                                     | 5.2 | 52        |
| 43 | Effect of Temperature on the Catalytic Ability of Electrochemically Active Biofilm as Anode Catalyst in<br>Microbial Fuel Cells. Electroanalysis, 2011, 23, 387-394.                                            | 2.9 | 51        |
| 44 | Nitrate reduction on Pt(111) surfaces modified by Bi adatoms. Electrochemistry Communications, 2009, 11, 1760-1763.                                                                                             | 4.7 | 50        |
| 45 | Nitrate reduction at Pt(100) single crystals and preferentially oriented nanoparticles in neutral media. Catalysis Today, 2013, 202, 2-11.                                                                      | 4.4 | 50        |
| 46 | Study of the Pt (111)   electrolyte interface in the region close to neutral pH solutions by the laser induced temperature jump technique. Electrochimica Acta, 2017, 228, 667-676.                             | 5.2 | 49        |
| 47 | Exploring the interfacial neutral pH region of Pt(111) electrodes. Electrochemistry Communications, 2015, 58, 62-64.                                                                                            | 4.7 | 48        |
| 48 | Potential of zero total charge of palladium modified Pt(111) electrodes in perchloric acid solutions.<br>Physical Chemistry Chemical Physics, 2001, 3, 3269-3276.                                               | 2.8 | 47        |
| 49 | Thermodynamic studies of phosphate adsorption on Pt(111) electrode surfaces in perchloric acid solutions. Electrochimica Acta, 2009, 54, 5836-5843.                                                             | 5.2 | 47        |
| 50 | Urea adsorption on Pt(111) electrodes. Journal of Electroanalytical Chemistry, 1999, 461, 65-75.                                                                                                                | 3.8 | 46        |
| 51 | Quantitative SNIFTIRS studies of (bi)sulfate adsorption at the Pt(111) electrode surface. Physical Chemistry Chemical Physics, 2010, 12, 15231.                                                                 | 2.8 | 46        |
| 52 | Effect of Deposited Bismuth on the Potential of Maximum Entropy of Pt(111) Single-Crystal Electrodes.<br>Journal of Physical Chemistry B, 2006, 110, 21092-21100.                                               | 2.6 | 45        |
| 53 | Specific reactivity of step sites towards CO adsorption and oxidation on platinum single crystals vicinal to Pt(111). Physical Chemistry Chemical Physics, 2010, 12, 11407.                                     | 2.8 | 45        |
| 54 | Determination of the Gibbs excess of H adsorbed at a Pt(111) electrode surface in the presence of co-adsorbed chloride. Journal of Electroanalytical Chemistry, 2005, 582, 76-84.                               | 3.8 | 44        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Nitrate reduction on Pt single crystals with Pd multilayer. Electrochimica Acta, 2009, 54, 2094-2101.                                                                                                                                 | 5.2  | 43        |
| 56 | Electrochemistry at Platinum Single Crystal Electrodes. Electroanalytical Chemistry, A Series of Advances, 2011, , 75-170.                                                                                                            | 1.7  | 43        |
| 57 | On the Electrochemical and in-Situ Fourier Transform Infrared Spectroscopy Characterization of Urea Adlayers at Pt(100) Electrodes. Langmuir, 1997, 13, 2380-2389.                                                                    | 3.5  | 42        |
| 58 | Active centers for Cu UPD–OPD in acid sulfate solution on Pt(111) electrodes. Electrochimica Acta, 2001, 46, 3137-3145.                                                                                                               | 5.2  | 39        |
| 59 | Coulostatic potential transients induced by laser heating of platinum stepped electrodes: influence of steps on the entropy of double layer formation. Journal of Electroanalytical Chemistry, 2004, 561, 157-165.                    | 3.8  | 39        |
| 60 | Peroxodisulfate reduction as a probe to interfacial charge. Electrochemistry Communications, 2018, 88, 43-46.                                                                                                                         | 4.7  | 39        |
| 61 | Electrochemical deposition of copper on stepped platinum surfaces in the [01] zone vicinal to the (100) plane. Journal of Electroanalytical Chemistry, 2008, 624, 228-240.                                                            | 3.8  | 38        |
| 62 | On the pH Dependence of the Potential of Maximum Entropy of Ir(111) Electrodes. Scientific Reports, 2017, 7, 1246.                                                                                                                    | 3.3  | 37        |
| 63 | Investigating the presence of adsorbed species on Pt steps at low potentials. Nature Communications, 2022, 13, 2550.                                                                                                                  | 12.8 | 37        |
| 64 | Influence of alkali cations on the infrared spectra of adsorbed (bi)sulphate on Pt(111) electrodes.<br>Electrochemistry Communications, 2006, 8, 1577-1582.                                                                           | 4.7  | 34        |
| 65 | Laser Induced Current Transients Applied to a Au(111) Single Crystal Electrode. A General Method for<br>the Measurement of Potentials of Zero Charge of Solid Electrodes. Journal of Physical Chemistry B,<br>2001, 105, 10669-10673. | 2.6  | 33        |
| 66 | Surface Acid–Base Properties of Anion-Adsorbed Species at Pt(111) Electrode Surfaces in Contact with<br>CO <sub>2</sub> -Containing Perchloric Acid Solutions. Journal of Physical Chemistry C, 2016, 120,<br>16191-16199.            | 3.1  | 31        |
| 67 | Voltammetric characterization of stepped platinum single crystal surfaces vicinal to the (110) pole.<br>Electrochemistry Communications, 2009, 11, 1515-1518.                                                                         | 4.7  | 30        |
| 68 | Evidence of Local pH Changes during Ethanol Oxidation at Pt Electrodes in Alkaline Media.<br>ChemElectroChem, 2015, 2, 1254-1258.                                                                                                     | 3.4  | 30        |
| 69 | Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent: New insights. Electrochemistry Communications, 2017, 78, 51-55.                                                                            | 4.7  | 30        |
| 70 | Study of dopamine reactivity on platinum single crystal electrode surfaces. Electrochimica Acta, 2013,<br>109, 577-586.                                                                                                               | 5.2  | 28        |
| 71 | New probes to surface free charge at electrochemical interfaces with platinum electrodes. Current<br>Opinion in Electrochemistry, 2019, 14, 16-22.                                                                                    | 4.8  | 28        |
| 72 | Determination of different local potentials of zero charge of a Pd–Au(111) heterogeneous surface.<br>Electrochemistry Communications, 2000, 2, 427-430.                                                                               | 4.7  | 27        |

| #  | Article                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Urea Adsorption on Platinum Single Crystal Stepped Surfaces. Langmuir, 2001, 17, 8260-8269.                                                                                                                                                                                                   | 3.5  | 27        |
| 74 | Study of the interface Pt(111)/ [Emmim][NTf2] using laser-induced temperature jump experiments.<br>Electrochemistry Communications, 2015, 55, 39-42.                                                                                                                                          | 4.7  | 27        |
| 75 | Investigating interfacial parameters with platinum single crystal electrodes. Russian Journal of Electrochemistry, 2017, 53, 227-236.                                                                                                                                                         | 0.9  | 27        |
| 76 | Characterization of the interfaces between Au(hkl) single crystal basal plane electrodes and [Emmim][Tf 2 N] ionic liquid. Electrochemistry Communications, 2016, 62, 44-47.                                                                                                                  | 4.7  | 25        |
| 77 | Peroxodisulphate reduction as a novel probe for the study of platinum single crystal/solution interphases. Journal of Electroanalytical Chemistry, 2008, 612, 269-276.                                                                                                                        | 3.8  | 24        |
| 78 | Thermodynamic evidence for K+–SO42â^' ion pair formation on Pt(111). New insight into cation specific adsorption. Physical Chemistry Chemical Physics, 2010, 12, 12146.                                                                                                                       | 2.8  | 24        |
| 79 | Elucidating the Structure of the Cu-Alkaline Electrochemical Interface with the Laser-Induced Temperature Jump Method. Journal of Physical Chemistry C, 2020, 124, 23253-23259.                                                                                                               | 3.1  | 24        |
| 80 | Separation of Temperature Effects on Double-Layer and Charge-Transfer Processes for<br>Platinum Solution Interphases. Entropy of Formation of the Double Layer and Absolute Molar<br>Entropy of Adsorbed Hydrogen and OH on Pt(111). Journal of Physical Chemistry C, 2009, 113, 19913-19925. | 3.1  | 23        |
| 81 | Nitrite Reduction on Bismuth Modified Pt(111) Surfaces in Different Electrolytic Media.<br>Electrocatalysis, 2011, 2, 255-262.                                                                                                                                                                | 3.0  | 22        |
| 82 | Determination of the entropy of formation of the Pt(111)â^£ perchloric acid solution interface.<br>Estimation of the entropy of adsorbed hydrogen and OH species. Journal of Solid State<br>Electrochemistry, 2008, 12, 387-398.                                                              | 2.5  | 21        |
| 83 | The hanging meniscus contact: geometry induced diffusional overpotential. The reduction of oxygen in dimethylsulphoxide at Au(111). Journal of Electroanalytical Chemistry, 2001, 513, 8-15.                                                                                                  | 3.8  | 20        |
| 84 | Understandings on the Inhibition of Oxygen Reduction Reaction by Bromide Adsorption on Pt(111)<br>Electrodes at Different pH Values. Journal of the Electrochemical Society, 2018, 165, J3045-J3051.                                                                                          | 2.9  | 20        |
| 85 | Comprehensive Study of the Enzymatic Catalysis of the Electrochemical Oxygen Reduction Reaction<br>(ORR) by Immobilized Copper Efflux Oxidase (CueO) From Escherichia coli. Frontiers in Chemistry, 2018,<br>6, 358.                                                                          | 3.6  | 20        |
| 86 | Interfacial Water Structure as a Descriptor for Its Electro-Reduction on<br>Ni(OH) <sub>2</sub> -Modified Cu(111). ACS Catalysis, 2021, 11, 10324-10332.                                                                                                                                      | 11.2 | 20        |
| 87 | Surface structure and relaxation during the oxidation of carbon monoxide on Pt–Pd bimetallic surfaces. Surface Science, 2001, 479, 241-246.                                                                                                                                                   | 1.9  | 19        |
| 88 | Specific and Reversible Immobilization of Proteins Tagged to the Affinity Polypeptide C-LytA on<br>Functionalized Graphite Electrodes. PLoS ONE, 2014, 9, e87995.                                                                                                                             | 2.5  | 19        |
| 89 | Urea Adsorption at Rhodium Single-Crystal Electrodes. Langmuir, 2000, 16, 10376-10384.                                                                                                                                                                                                        | 3.5  | 18        |
| 90 | Mechanistic changes observed in heavy water for nitrate reduction reaction on palladium-modified<br>Pt(hkl) electrodes. Chemical Science, 2012, 3, 3063.                                                                                                                                      | 7.4  | 18        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Positive shift of the potential of zero total charge of stepped Pt(111) electrodes decorated by irreversibly adsorbed bismuth. Electrochemistry Communications, 2001, 3, 590-594.                        | 4.7 | 17        |
| 92  | Probing the Electrocatalytic Oxygen Reduction Reaction Reactivity of Immobilized Multicopper<br>Oxidase CueO. Journal of Physical Chemistry C, 2014, 118, 15754-15765.                                   | 3.1 | 17        |
| 93  | Bromide Adsorption on Pt(111) over a Wide Range of pH: Cyclic Voltammetry and CO Displacement Experiments. Journal of Physical Chemistry C, 2018, 122, 18562-18569.                                      | 3.1 | 17        |
| 94  | Investigating the M(hkl)   ionic liquid interface by using laser induced temperature jump technique.<br>Electrochimica Acta, 2019, 311, 30-40.                                                           | 5.2 | 17        |
| 95  | Single Crystal Electrochemistry as an In Situ Analytical Characterization Tool. Annual Review of Analytical Chemistry, 2020, 13, 201-222.                                                                | 5.4 | 17        |
| 96  | Hydrolysis of the 4-cyanopyridine on a Au(111) electrode studied by vibrational spectroscopies.<br>Electrochimica Acta, 2001, 46, 4319-4329.                                                             | 5.2 | 16        |
| 97  | Reduction of CO2 on bismuth modified Pt(110) single-crystal surfaces. Effect of bismuth and poisoning intermediates on the rate of hydrogen evolution. Electrochimica Acta, 2011, 56, 4451-4456.         | 5.2 | 16        |
| 98  | Electrochemical features of Pt(S)[n(110)×(100)] surfaces in acidic media. Electrochemistry<br>Communications, 2013, 34, 291-294.                                                                         | 4.7 | 16        |
| 99  | Role of the interfacial water structure on electrocatalysis: Oxygen reduction on Pt(1 1 1) in methanesulfonic acid. Catalysis Today, 2016, 262, 95-99.                                                   | 4.4 | 16        |
| 100 | Underpotential deposition of Nickel on platinum single crystal electrodes. Journal of<br>Electroanalytical Chemistry, 2018, 819, 391-400.                                                                | 3.8 | 16        |
| 101 | Analysis of catechol, 4-methylcatechol and dopamine electrochemical reactions on different substrate materials and pH conditions. Electrochimica Acta, 2018, 292, 309-321.                               | 5.2 | 16        |
| 102 | New insights into the Pt(hkl)-alkaline solution interphases from the laser induced temperature jump method. Journal of Electroanalytical Chemistry, 2020, 872, 114068.                                   | 3.8 | 15        |
| 103 | Crystallographic orientation and electrode nature are key factors for electric current generation by<br>Geobacter sulfurreducens. Bioelectrochemistry, 2014, 98, 11-19.                                  | 4.6 | 14        |
| 104 | The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes: Part 2.<br>Semicarbazide on Pt(100) electrodes. Journal of Electroanalytical Chemistry, 1997, 436, 245-255. | 3.8 | 13        |
| 105 | Kinetic study of CO oxidation on step decorated Pt(111) vicinal single crystal electrodes.<br>Electrochimica Acta, 2011, 56, 5993-6000.                                                                  | 5.2 | 13        |
| 106 | Temperature effects on platinum single-crystal electrodes. Russian Journal of Electrochemistry, 2012,<br>48, 271-280.                                                                                    | 0.9 | 13        |
| 107 | Real-time monitoring of electrochemically active biofilm developing behavior on bioanode by using EQCM and ATR/FTIR. Sensors and Actuators B: Chemical, 2015, 209, 781-789.                              | 7.8 | 13        |
| 108 | Activation Energy of Hydrogen Adsorption on Pt(111) in Alkaline Media: An Impedance Spectroscopy<br>Study at Variable Temperatures. ACS Applied Materials & Interfaces, 2020, 12, 42911-42917.           | 8.0 | 13        |

| #   | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Pt-grown carbon nanofibers for detection of hydrogen peroxide. RSC Advances, 2018, 8, 12742-12751.                                                                                                                                                              | 3.6 | 12        |
| 110 | Energy and economic advantages of simultaneous hydrogen and biogas production in microbial<br>electrolysis cells as a function of the applied voltage and biomass content. Sustainable Energy and<br>Fuels, 2021, 5, 2003-2017.                                 | 4.9 | 12        |
| 111 | The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes.<br>Journal of Electroanalytical Chemistry, 1999, 467, 20-29.                                                                                                       | 3.8 | 11        |
| 112 | Clues for the Molecular-Level Understanding of Electrocatalysis on Single-Crystal Platinum Surfaces<br>Modified byp-Block Adatoms. , 0, , 209-244.                                                                                                              |     | 11        |
| 113 | Interaction of water with methanesulfonic acid on Pt single crystal electrodes. Electrochemistry Communications, 2015, 50, 47-50.                                                                                                                               | 4.7 | 11        |
| 114 | Investigation of the interfacial properties of platinum stepped surfaces using peroxodisulfate reduction as a local probe. Electrochimica Acta, 2019, 307, 553-563.                                                                                             | 5.2 | 11        |
| 115 | Model System for the Study of 2D Phase Transitions and Supramolecular Interactions at Electrified<br>Interfaces:  Hydrogen-Assisted Reductive Desorption of Catechol-Derived Adlayers from Pt(111)<br>Single-Crystal Electrodes. Langmuir, 2008, 24, 3551-3561. | 3.5 | 10        |
| 116 | Electrochemical properties of palladium adlayers on Pt(110) substrates. Journal of Electroanalytical<br>Chemistry, 2011, 660, 276-284.                                                                                                                          | 3.8 | 10        |
| 117 | Enhanced electrochemical reversibility of ultrathin aniline oligomer films grown on Pt(111).<br>Electrochemistry Communications, 2011, 13, 1304-1308.                                                                                                           | 4.7 | 10        |
| 118 | Amorphous carbon thin film electrodes with intrinsic Pt-gradient for hydrogen peroxide detection.<br>Electrochimica Acta, 2017, 251, 60-70.                                                                                                                     | 5.2 | 10        |
| 119 | Formation of atomic-sized contacts controlled by electrochemical methods. Physica Status Solidi (A)<br>Applications and Materials Science, 2007, 204, 1677-1685.                                                                                                | 1.8 | 9         |
| 120 | Use of CO as a Cleaning Tool of Highly Active Surfaces in Contact with Ionic Liquids: Ni Deposition on Pt(111) Surfaces in IL. ACS Applied Energy Materials, 2018, 1, 4617-4625.                                                                                | 5.1 | 8         |
| 121 | Interfacial Study of Nickelâ€Modified Pt(111) Surfaces in Phosphateâ€Containing Solutions: Effect on the Hydrogen Evolution Reaction. ChemPhysChem, 2019, 20, 3056-3066.                                                                                        | 2.1 | 8         |
| 122 | 1 Temperature Effects on Platinum Single-Crystal/Aqueous Solution Interphases. Combining Gibbs<br>Thermodynamics with Laser-Pulsed Experiments. Modern Aspects of Electrochemistry, 2011, , 1-105.                                                              | 0.2 | 7         |
| 123 | Effect of surface structure of platinum single crystal electrodes on the electrochemical reduction of CO2 in methanol-water mixtures. Journal of Electroanalytical Chemistry, 2017, 793, 157-163.                                                               | 3.8 | 7         |
| 124 | Nitrate Reduction on Platinum (111) Surfaces Modifiedl with Bi: Single Crystalsl and Nanoparticles.<br>Zeitschrift Fur Physikalische Chemie, 2012, 226, 901-917.                                                                                                | 2.8 | 6         |
| 125 | Cation Effects on Interfacial Water Structure and Hydrogen Peroxide Reduction on Pt(111). ACS Measurement Science Au, 2021, 1, 48-55.                                                                                                                           | 4.4 | 6         |
| 126 | On the behavior of CTAB/CTAOH adlayers on gold single crystal surfaces. Electrochimica Acta, 2021, 391, 138947.                                                                                                                                                 | 5.2 | 6         |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Reactivity of Pt(h,k,l) surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 134, 133-143.                                                                                                     | 4.7 | 5         |
| 128 | NO adsorption on Pt (111)/Bi surfaces. Electrochemistry Communications, 2013, 34, 37-40.                                                                                                                                    | 4.7 | 5         |
| 129 | Peroxodisulfate reduction on platinum stepped surfaces vicinal to the (110) and (100) poles. Journal of Electroanalytical Chemistry, 2019, 847, 113226.                                                                     | 3.8 | 5         |
| 130 | Electrochemical Properties of Pd/Pt(111) Adlayers. , 2002, , 37-52.                                                                                                                                                         |     | 5         |
| 131 | Ionic Liquids in the Field of Metal Electrodeposition. , 2018, , 690-700.                                                                                                                                                   |     | 4         |
| 132 | Cu(111) single crystal electrodes: Modifying interfacial properties to tailor electrocatalysis.<br>Electrochimica Acta, 2021, 396, 139222.                                                                                  | 5.2 | 4         |
| 133 | Surface excesses at very low concentrations from extrapolation of thermodynamic data: A way to explore beyond practical limits from reliable experimental data. Journal of Electroanalytical Chemistry, 2010, 649, 119-125. | 3.8 | 3         |
| 134 | On the thermodynamics of hydrogen adsorption over Pt(111) in 0.05M NaOH. Journal of Chemical Physics, 2021, 155, 244704.                                                                                                    | 3.0 | 3         |
| 135 | Adsorption and first stages of polymerization of aniline on platinum single crystal electrodes.<br>Synthetic Metals, 2014, 196, 61-67.                                                                                      | 3.9 | 2         |
| 136 | Surface charge and interfacial acid-base properties: pKa,2 of carbon dioxide at Pt(110)/perchloric acid solution interfaces Electrochimica Acta, 2021, 388, 138639.                                                         | 5.2 | 2         |
| 137 | Size-Dependent and Step-Modulated Supramolecular Electrochemical Properties of Catechol-Derived<br>Adlayers at Pt( <i>hkl</i> ) Surfaces. Langmuir, 2013, 29, 13102-13110.                                                  | 3.5 | 1         |
| 138 | Editorial: Surface Electrochemistry. Current Opinion in Electrochemistry, 2017, 1, A5-A7.                                                                                                                                   | 4.8 | 0         |
| 139 | Electrochemical Behavior of Single Crystal Electrodes on Model Processes. Springer Handbooks, 2020, , 1117-1158.                                                                                                            | 0.6 | 0         |