
## Erwin Rauch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3369240/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Human-robot activity allocation algorithm for the redesign of manual assembly systems into<br>human-robot collaborative assembly. International Journal of Computer Integrated Manufacturing,<br>2023, 36, 308-333.                              | 4.6 | 9         |
| 2  | Human-Robot Collaboration During Assembly Tasks: The Cognitive Effects of Collaborative Assembly Workstation Features. Lecture Notes in Networks and Systems, 2022, , 242-249.                                                                   | 0.7 | 4         |
| 3  | Development and validation of guidelines for safety in human-robot collaborative assembly systems.<br>Computers and Industrial Engineering, 2022, 163, 107801.                                                                                   | 6.3 | 35        |
| 4  | Systematic selection methodology for worker assistance systems in manufacturing. Computers and Industrial Engineering, 2022, 166, 107982.                                                                                                        | 6.3 | 9         |
| 5  | Reference Architecture for an Integrated and Synergetic Use of Digital Tools in Education 4.0.<br>Procedia Computer Science, 2022, 200, 407-417.                                                                                                 | 2.0 | 14        |
| 6  | A value sensitive design approach for designing AI-based worker assistance systems in manufacturing.<br>Procedia Computer Science, 2022, 200, 505-516.                                                                                           | 2.0 | 8         |
| 7  | Towards Sustainable Manufacturing: A Case Study for Sustainable Packaging Redesign. Lecture Notes<br>in Mechanical Engineering, 2022, , 84-93.                                                                                                   | 0.4 | 2         |
| 8  | Development and evaluation of design guidelines for cognitive ergonomics in human-robot collaborative assembly systems. Applied Ergonomics, 2022, 104, 103807.                                                                                   | 3.1 | 22        |
| 9  | Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review. Robotics and Computer-Integrated Manufacturing, 2021, 67, 101998.                                                        | 9.9 | 201       |
| 10 | Usage of Autonomous Mobile Robots Outdoors - an Axiomatic Design Approach. Procedia CIRP, 2021,<br>96, 242-247.                                                                                                                                  | 1.9 | 12        |
| 11 | Three Dimensional Technology Radar Model to Evaluate Emerging Industry 4.0 Technologies. Lecture<br>Notes in Mechanical Engineering, 2021, , 233-242.                                                                                            | 0.4 | 2         |
| 12 | Industrial Assistance Systems to Enhance Human–Machine Interaction and Operator's Capabilities in<br>Assembly. , 2021, , 129-161.                                                                                                                |     | 4         |
| 13 | Implementation of a Vision-Based Worker Assistance System in Assembly: a Case Study. Procedia CIRP, 2021, 96, 295-300.                                                                                                                           | 1.9 | 6         |
| 14 | Function-Based Mapping of Industrial Assistance Systems to User Groups in Production. Procedia CIRP, 2021, 96, 278-283.                                                                                                                          | 1.9 | 6         |
| 15 | Teaching Axiomatic Design for a Long-Term Sustainable Introduction of Industry 4.0 in SMEs. Procedia<br>CIRP, 2021, 96, 169-174.                                                                                                                 | 1.9 | 4         |
| 16 | Methodology for the definition of the optimal assembly cycle and calculation of the optimized<br>assembly cycle time in human-robot collaborative assembly. International Journal of Advanced<br>Manufacturing Technology, 2021, 113, 2369-2384. | 3.0 | 25        |
| 17 | Mechatronic Re-Design of a Manual Assembly Workstation into a Collaborative One for Wire Harness<br>Assemblies. Robotics, 2021, 10, 43.                                                                                                          | 3.5 | 12        |
| 18 | Research Fields and Challenges to implement Cyber-Physical Production Systems in SMEs: A Literature<br>Review. Chiang Mai University Journal of Natural Sciences, 2021, 20, .                                                                    | 0.1 | 2         |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Worker assistance systems in manufacturing: A review of the state of the art and future directions.<br>Journal of Manufacturing Systems, 2021, 59, 228-250.                                                     | 13.9 | 69        |
| 20 | A Cybersecurity Assessment Model for Small and Medium-Sized Enterprises. IEEE Engineering<br>Management Review, 2021, 49, 98-109.                                                                               | 1.3  | 8         |
| 21 | Knowledge Transfer and Introduction of Industry 4.0 in SMEs. , 2021, , 275-302.                                                                                                                                 |      | 5         |
| 22 | Application of Axiomatic Design for the Design of Flexible and Agile Manufacturing Systems. , 2021, , 483-519.                                                                                                  |      | 0         |
| 23 | The Application of Digital Worker Assistance Systems to Support Workers with Disabilities in Assembly Processes. Procedia CIRP, 2021, 103, 243-249.                                                             | 1.9  | 2         |
| 24 | Artificial Intelligence in Design: A Look into the Future of Axiomatic Design. , 2021, , 585-603.                                                                                                               |      | 1         |
| 25 | Development of a Morphological Box to Describe Worker Assistance Systems in Manufacturing.<br>Procedia Manufacturing, 2021, 55, 168-175.                                                                        | 1.9  | 3         |
| 26 | Application of Axiomatic Design for the Development of Robotic Semi- and Fully Automated Assembly<br>Processes: Two Case Studies. , 2021, , .                                                                   |      | 1         |
| 27 | Biological Transformation in Manufacturing: Overview and Fields of Application. IEEE Engineering<br>Management Review, 2021, 49, 115-122.                                                                       | 1.3  | 2         |
| 28 | Urban production – A socially sustainable factory concept to overcome shortcomings of qualified workers in smart SMEs. Computers and Industrial Engineering, 2020, 139, 105384.                                 | 6.3  | 64        |
| 29 | Anthropocentric perspective of production before and within Industry 4.0. Computers and Industrial Engineering, 2020, 139, 105644.                                                                              | 6.3  | 162       |
| 30 | From Design for Assembly to Design for Collaborative Assembly - Product Design Principles for<br>Enhancing Safety, Ergonomics and Efficiency in Human-Robot Collaboration. Procedia CIRP, 2020, 91,<br>546-552. | 1.9  | 14        |
| 31 | Lean management in hospitality: methods, applications and future directions. International Journal of<br>Services and Operations Management, 2020, 36, 303.                                                     | 0.2  | 5         |
| 32 | Safety, Ergonomics and Efficiency in Human-Robot Collaborative Assembly: Design Guidelines and Requirements. Procedia CIRP, 2020, 91, 367-372.                                                                  | 1.9  | 30        |
| 33 | Study of the impact of projection-based assistance systems for improving the learning curve in assembly processes. Procedia CIRP, 2020, 88, 98-103.                                                             | 1.9  | 13        |
| 34 | BIM, Augmented and Virtual Reality empowering Lean Construction Management: a project simulation<br>game. Procedia Manufacturing, 2020, 45, 49-54.                                                              | 1.9  | 37        |
| 35 | The Advantages of Industry 4.0 Applications for Sustainability: Results from a Sample of<br>Manufacturing Companies. Sustainability, 2020, 12, 3647.                                                            | 3.2  | 104       |
| 36 | A Review of Further Directions for Artificial Intelligence, Machine Learning, and Deep Learning in<br>Smart Logistics. Sustainability, 2020, 12, 3760.                                                          | 3.2  | 106       |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Design of Human-Centered Collaborative Assembly Workstations for the Improvement of Operators'<br>Physical Ergonomics and Production Efficiency: A Case Study. Sustainability, 2020, 12, 3606. | 3.2 | 79        |
| 38 | A Maturity Level-Based Assessment Tool to Enhance the Implementation of Industry 4.0 in Small and<br>Medium-Sized Enterprises. Sustainability, 2020, 12, 3559.                                 | 3.2 | 58        |
| 39 | Systematic analysis of needs and requirements for the design of smart manufacturing systems in SMEsâ~†. Journal of Computational Design and Engineering, 2020, 7, 129-144.                     | 3.1 | 17        |
| 40 | SME 4.0: The Role of Small- and Medium-Sized Enterprises in the Digital Transformation. , 2020, , 3-36.                                                                                        |     | 55        |
| 41 | SME Requirements and Guidelines for the Design of Smart and Highly Adaptable Manufacturing Systems. , 2020, , 39-72.                                                                           |     | 17        |
| 42 | Industry 4.0+: The Next Level of Intelligent and Self-optimizing Factories. Lecture Notes in Mechanical Engineering, 2020, , 176-186.                                                          | 0.4 | 17        |
| 43 | Die Natur als Inspiration. ZWF Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb, 2020, 115, 158-161.                                                                                            | 0.3 | 3         |
| 44 | Requirements and Barriers for Introducing Smart Manufacturing in Small and Medium-Sized<br>Enterprises. IEEE Engineering Management Review, 2019, 47, 87-94.                                   | 1.3 | 75        |
| 45 | An agile scheduling and control approach in ETO construction supply chains. Computers in Industry, 2019, 112, 103122.                                                                          | 9.9 | 38        |
| 46 | A human-in-the-loop cyber-physical system for collaborative assembly in smart manufacturing.<br>Procedia CIRP, 2019, 81, 600-605.                                                              | 1.9 | 52        |
| 47 | AD Design Guidelines for Implementing 14.0 Learning Factories. Procedia Manufacturing, 2019, 31, 239-244.                                                                                      | 1.9 | 10        |
| 48 | From a literature review to a conceptual framework of enablers for smart manufacturing control.<br>International Journal of Advanced Manufacturing Technology, 2019, 104, 517-533.             | 3.0 | 40        |
| 49 | Roadmap in eine Digitale Welt. ZWF Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb, 2019, 114, 576-579.                                                                                        | 0.3 | 3         |
| 50 | An evaluation methodology for the conversion of manual assembly systems into human-robot collaborative workcells. Procedia Manufacturing, 2019, 38, 358-366.                                   | 1.9 | 32        |
| 51 | Industry 4.0 for Managing Logistic Service Providers Lifecycle. MATEC Web of Conferences, 2019, 301, 00014.                                                                                    | 0.2 | 1         |
| 52 | Inclusion of Workers with Disabilities in Production 4.0: Legal Foundations in Europe and Potentials<br>Through Worker Assistance Systems. Sustainability, 2019, 11, 5978.                     | 3.2 | 36        |
| 53 | Modeling and application of configuration complexity scale: concept for customized production.<br>International Journal of Advanced Manufacturing Technology, 2019, 100, 485-501.              | 3.0 | 10        |
| 54 | Axiomatic design guidelines for the design of flexible and agile manufacturing and assembly systems for SMEs. International Journal on Interactive Design and Manufacturing, 2019, 13, 1-22.   | 2.2 | 35        |

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Concept Design of a Digital Shop Floor Information System for Assembly Operators in Machine<br>Industry. MATEC Web of Conferences, 2019, 301, 00017.                   | 0.2 | 4         |
| 56 | Complexity reduction in engineer-to-order industry through real-time capable production planning and control. Production Engineering, 2018, 12, 341-352.               | 2.3 | 33        |
| 57 | Industry 4.0 as an enabler of proximity for construction supply chains: A systematic literature review.<br>Computers in Industry, 2018, 99, 205-225.                   | 9.9 | 313       |
| 58 | Industry sector analysis for the application of additive manufacturing in smart and distributed manufacturing systems. Manufacturing Letters, 2018, 15, 126-131.       | 2.2 | 46        |
| 59 | Application of Axiomatic Design for the Design of a Safe Collaborative Human-Robot Assembly<br>Workplace. MATEC Web of Conferences, 2018, 223, 01003.                  | 0.2 | 13        |
| 60 | Axiomatic Design based Design of a Software Prototype for Smart Shopfloor Management. MATEC Web of Conferences, 2018, 223, 01012.                                      | 0.2 | 6         |
| 61 | A Lean Approach for Real-Time Planning and Monitoring in Engineer-to-Order Construction Projects.<br>Buildings, 2018, 8, 38.                                           | 3.1 | 31        |
| 62 | Knowledge Transfer and Introduction of Industry 4.0 in SMEs. Advances in Business Information Systems and Analytics Book Series, 2018, , 256-282.                      | 0.4 | 10        |
| 63 | Critical Factors for Introducing Lean Product Development to Small and Medium sized Enterprises in<br>Italy. Procedia CIRP, 2017, 60, 362-367.                         | 1.9 | 36        |
| 64 | Business Model Engineering for Distributed Manufacturing Systems. Procedia CIRP, 2017, 62, 135-140.                                                                    | 1.9 | 8         |
| 65 | Parametric and Generative Design Techniques for Mass-Customization in Building Industry: A Case<br>Study for Glued-Laminated Timber. Procedia CIRP, 2017, 60, 392-397. | 1.9 | 23        |
| 66 | Enabling Connectivity of Cyber-physical Production Systems: A Conceptual Framework. Procedia<br>Manufacturing, 2017, 11, 822-829.                                      | 1.9 | 39        |
| 67 | Simulation Based Validation of Supply Chain Effects through ICT enabled Real-time-capability in ETO Production Planning. Procedia Manufacturing, 2017, 11, 846-853.    | 1.9 | 29        |
| 68 | Sustainable Construction Supply Chains through Synchronized Production Planning and Control in Engineer-to-Order Enterprises. Sustainability, 2017, 9, 1888.           | 3.2 | 30        |
| 69 | Sustainability in Manufacturing and Supply Chains Through Distributed Manufacturing Systems and Networks. , 2017, , 429-438.                                           |     | 2         |
| 70 | Axiomatic Design of a Framework for the Comprehensive Optimization of Patient Flows in Hospitals.<br>Journal of Healthcare Engineering, 2017, 2017, 1-9.               | 1.9 | 23        |
| 71 | (Re-)Design of a Demonstration Model for a Flexible and Decentralized Cyber-Physical Production System (CPPS). MATEC Web of Conferences, 2017, 127, 01016.             | 0.2 | 4         |
| 72 | Distributed manufacturing network models of smart and agile mini-factories. International Journal of Agile Systems and Management, 2017, 10, 185.                      | 0.3 | 56        |

Erwin Rauch

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Distributed manufacturing network models of smart and agile mini-factories. International Journal of Agile Systems and Management, 2017, 10, 185.                                                           | 0.3 | 32        |
| 74 | Collaborative Cloud Manufacturing: Design of Business Model Innovations Enabled by Cyberphysical<br>Systems in Distributed Manufacturing Systems. Journal of Engineering (United States), 2016, 2016, 1-12. | 1.0 | 29        |
| 75 | Customer-oriented Production System for Supplier Companies in CTO. Procedia CIRP, 2016, 57, 533-538.                                                                                                        | 1.9 | 4         |
| 76 | Application of Axiomatic Design in Manufacturing System Design: A Literature Review. Procedia CIRP, 2016, 53, 1-7.                                                                                          | 1.9 | 21        |
| 77 | The Way from Lean Product Development (LPD) to Smart Product Development (SPD). Procedia CIRP, 2016, 50, 26-31.                                                                                             | 1.9 | 65        |
| 78 | Design and Implementation Approach for Distributed Manufacturing Networks Using Axiomatic Design. , 2016, , 225-250.                                                                                        |     | 4         |
| 79 | Sustainable production in emerging markets through Distributed Manufacturing Systems (DMS).<br>Journal of Cleaner Production, 2016, 135, 127-138.                                                           | 9.3 | 102       |
| 80 | Requirements for the Design of Flexible and Changeable Manufacturing and Assembly Systems: A<br>SME-survey. Procedia CIRP, 2016, 41, 207-212.                                                               | 1.9 | 57        |
| 81 | Lean Hospitality - Application of Lean Management Methods in the Hotel Sector. Procedia CIRP, 2016, 41, 614-619.                                                                                            | 1.9 | 36        |
| 82 | Chapter two Designing assembly lines for mass customization production systems. , 2016, , 15-36.                                                                                                            |     | 4         |
| 83 | Smart Factory für den Mittelstand. ZWF Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb, 2016, 111,<br>52-55.                                                                                                | 0.3 | 13        |
| 84 | Systematic Design of SME Manufacturing and Assembly Systems Based on Axiomatic Design. Procedia<br>CIRP, 2015, 34, 81-86.                                                                                   | 1.9 | 13        |
| 85 | An axiomatic design-based approach for the patient-value-oriented design of a sustainable Lean<br>healthcare system. International Journal of Procurement Management, 2015, 8, 66.                          | 0.2 | 5         |
| 86 | Increasing productivity in ETO construction projects through a lean methodology for demand predictability. , 2015, , .                                                                                      |     | 13        |
| 87 | Mobile On-site Factories — Scalable and distributed manufacturing systems for the construction industry. , 2015, , .                                                                                        |     | 12        |
| 88 | Sustainability in the Supply Chain through Synchronization of Demand and Supply in ETO-Companies.<br>Procedia CIRP, 2015, 29, 215-220.                                                                      | 1.9 | 18        |
| 89 | Sustainability in Manufacturing through Distributed Manufacturing Systems (DMS). Procedia CIRP, 2015, 29, 544-549.                                                                                          | 1.9 | 52        |
| 90 | Trends towards Distributed Manufacturing Systems and Modern Forms for their Design. Procedia<br>CIRP, 2015, 33, 185-190.                                                                                    | 1.9 | 101       |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Axiomatic Design Based Guidelines for the Design of a Lean Product Development Process. Procedia CIRP, 2015, 34, 112-118.                                                   | 1.9 | 22        |
| 92  | Synchronization of Engineering, Manufacturing and on-site Installation in Lean ETO-Enterprises.<br>Procedia CIRP, 2015, 37, 128-133.                                        | 1.9 | 12        |
| 93  | On-site Oriented Capacity Regulation for Fabrication Shops in Engineer-to-Order Companies (ETO).<br>Procedia CIRP, 2015, 33, 197-202.                                       | 1.9 | 8         |
| 94  | Mini-factory – A Learning Factory Concept for Students and Small and Medium Sized Enterprises.<br>Procedia CIRP, 2014, 17, 178-183.                                         | 1.9 | 61        |
| 95  | Synchronization of the Manufacturing Process and On-site Installation in ETO Companies. Procedia CIRP, 2014, 17, 457-462.                                                   | 1.9 | 29        |
| 96  | A Three Level Model for the Design, Planning and Operation of Changeable Production Systems in Distributed Manufacturing. , 2014, , 23-28.                                  |     | 2         |
| 97  | SMART Reconfigurability Approach in Manufacture of Steel and Façade Constructions. , 2014, , 29-34.                                                                         |     | 6         |
| 98  | Implementing Lean in Engineer-to-Order Manufacturing. Advances in Logistics, Operations, and<br>Management Science Book Series, 2014, , 148-172.                            | 0.4 | 23        |
| 99  | Implementation of Lean Production in Small Sized Enterprises. Procedia CIRP, 2013, 12, 420-425.                                                                             | 1.9 | 83        |
| 100 | Design of a Network of Scalable Modular Manufacturing Systems to Support Geographically Distributed Production of Mass Customized Goods. Procedia CIRP, 2013, 12, 438-443.  | 1.9 | 30        |
| 101 | Design of a Scalable Modular Production System for a Two-Stage Food Service Franchise System.<br>International Journal of Engineering Business Management, 2012, 4, 32.     | 3.7 | 10        |
| 102 | Continuous Improvement of Manufacturing Systems with the Concept of Functional Periodicity. Key Engineering Materials, 2011, 473, 783-790.                                  | 0.4 | 13        |
| 103 | Kundennutzenorientierte Strategieentwicklung. ZWF Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb,<br>2010, 105, 700-705.                                                   | 0.3 | 1         |
| 104 | Mobile Factory Network (MFN) – Network of Flexible and Agile Manufacturing Systems in the<br>Construction Industry. Applied Mechanics and Materials, 0, 752-753, 1368-1373. | 0.2 | 7         |
| 105 | An Industry 4.0 Training Framework Addressing â€~COVID-19 Type' Disruptions on Manufacturing. , 0, ,<br>60-80.                                                              |     | 0         |