## Joshua C Weavil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3368982/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Impact of aging on the work of breathing during exercise in healthy men. Journal of Applied Physiology, 2022, 132, 689-698.                                                                                                                                     | 2.5 | 3         |
| 2  | Passive leg movement-induced vasodilation and exercise-induced sympathetic vasoconstriction.<br>Autonomic Neuroscience: Basic and Clinical, 2022, 239, 102969.                                                                                                  | 2.8 | 3         |
| 3  | Preâ€fatiguing Isometric Quadriceps Exercise Impairs Contralateral Quadriceps W' During Allâ€out and<br>Not Target Torque Time to Task Failure Exercise. FASEB Journal, 2022, 36, .                                                                             | 0.5 | Ο         |
| 4  | On the role of skeletal muscle acidosis and inorganic phosphates as determinants of central and peripheral fatigue: A <sup>31</sup> Pâ€MRS study. Journal of Physiology, 2022, 600, 3069-3081.                                                                  | 2.9 | 23        |
| 5  | Cene and protein expression of dorsal root ganglion sensory receptors in normotensive and<br>hypertensive male rats. American Journal of Physiology - Regulatory Integrative and Comparative<br>Physiology, 2022, 323, R221-R226.                               | 1.8 | 2         |
| 6  | Ascorbate attenuates cycling exercise-induced neuromuscular fatigue but fails to improve exertional dyspnea and exercise tolerance in COPD. Journal of Applied Physiology, 2021, 130, 69-79.                                                                    | 2.5 | 8         |
| 7  | Heart failure with preserved ejection fraction diminishes peripheral hemodynamics and accelerates exercise-induced neuromuscular fatigue. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H338-H351.                              | 3.2 | 13        |
| 8  | Acute high-intensity exercise and skeletal muscle mitochondrial respiratory function: role of<br>metabolic perturbation. American Journal of Physiology - Regulatory Integrative and Comparative<br>Physiology, 2021, 321, R687-R698.                           | 1.8 | 3         |
| 9  | On the implication of dietary nitrate supplementation for the hemodynamic and fatigue response to cycling exercise. Journal of Applied Physiology, 2021, 131, 1691-1700.                                                                                        | 2.5 | 8         |
| 10 | The relationship between <i>W</i> ′ and peripheral fatigue considered. Experimental Physiology, 2020, 105, 211-212.                                                                                                                                             | 2.0 | 3         |
| 11 | On the Influence of Group III/IV Muscle Afferent Feedback on Endurance Exercise Performance.<br>Exercise and Sport Sciences Reviews, 2020, 48, 209-216.                                                                                                         | 3.0 | 30        |
| 12 | The muscle reflex and chemoreflex interaction: ventilatory implications for the exercising human.<br>Journal of Applied Physiology, 2020, 129, 691-700.                                                                                                         | 2.5 | 9         |
| 13 | The exercise pressor reflex and chemoreflex interaction: cardiovascular implications for the exercising human. Journal of Physiology, 2020, 598, 2311-2321.                                                                                                     | 2.9 | 29        |
| 14 | Vasodilatory and vascular mitochondrial respiratory function with advancing age: evidence of a free radically mediated link in the human vasculature. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R701-R711. | 1.8 | 13        |
| 15 | Exercise Pressor Reflex Contributes to the Cardiovascular Abnormalities Characterizing.<br>Hypertension, 2019, 74, 1468-1475.                                                                                                                                   | 2.7 | 15        |
| 16 | Pharmacological attenuation of group III/IV muscle afferents improves endurance performance when oxygen delivery to locomotor muscles is preserved. Journal of Applied Physiology, 2019, 127, 1257-1266.                                                        | 2.5 | 31        |
| 17 | Neuromuscular fatigue during whole body exercise. Current Opinion in Physiology, 2019, 10, 128-136.                                                                                                                                                             | 1.8 | 22        |
| 18 | Identifying the role of group III/IV muscle afferents in the carotid baroreflex control of mean arterial pressure and heart rate during exercise. Journal of Physiology, 2018, 596, 1373-1384.                                                                  | 2.9 | 27        |

JOSHUA C WEAVIL

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Acute High-Intensity Exercise Impairs Skeletal Muscle Respiratory Capacity. Medicine and Science in Sports and Exercise, 2018, 50, 2409-2417.                                                                                                                          | 0.4 | 34        |
| 20 | Corticospinal excitability during fatiguing whole body exercise. Progress in Brain Research, 2018, 240, 219-246.                                                                                                                                                       | 1.4 | 25        |
| 21 | Vascular mitochondrial respiratory function: the impact of advancing age. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2018, 315, H1660-H1669.                                                                                                | 3.2 | 17        |
| 22 | Impact of age on the development of fatigue during large and small muscle mass exercise. American<br>Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R741-R750.                                                                  | 1.8 | 14        |
| 23 | Fatigueâ€related group III/IV muscle afferent feedback facilitates intracortical inhibition during<br>locomotor exercise. Journal of Physiology, 2018, 596, 4789-4801.                                                                                                 | 2.9 | 64        |
| 24 | Muscle Afferent Blockade Improves Endurance Exercise Performance When O2 Transport To<br>Locomotor Muscles Is Pre- served. Medicine and Science in Sports and Exercise, 2018, 50, 849.                                                                                 | 0.4 | 1         |
| 25 | Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. Clinical Neurophysiology, 2017, 128, 44-55.                                                                           | 1.5 | 92        |
| 26 | Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. Journal of Physiology, 2016, 594, 5303-5315.                                                                                                        | 2.9 | 127       |
| 27 | The mechanistic basis of the power–time relationship: potential role of the group III/IV muscle afferents. Journal of Physiology, 2016, 594, 7165-7166.                                                                                                                | 2.9 | 9         |
| 28 | Fatigue diminishes motoneuronal excitability during cycling exercise. Journal of Neurophysiology,<br>2016, 116, 1743-1751.                                                                                                                                             | 1.8 | 39        |
| 29 | Symmorphosis in patients with chronic heart failure?. Journal of Applied Physiology, 2016, 121, 1039-1039.                                                                                                                                                             | 2.5 | 4         |
| 30 | Symmorphosis and skeletal muscle : <i>in vivo</i> and <i>in vitro</i> measures reveal differing constraints in the exerciseâ€ŧrained and untrained human. Journal of Physiology, 2016, 594, 1741-1751.                                                                 | 2.9 | 79        |
| 31 | Aging alters muscle reflex control of autonomic cardiovascular responses to rhythmic contractions<br>in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1479-H1489.                                                             | 3.2 | 30        |
| 32 | Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee<br>extensors during isometric and locomotor exercise. American Journal of Physiology - Regulatory<br>Integrative and Comparative Physiology, 2015, 308, R998-R1007. | 1.8 | 37        |
| 33 | Endurance exercise performance in acute hypoxia is influenced by expiratory flow limitation.<br>European Journal of Applied Physiology, 2015, 115, 1653-1663.                                                                                                          | 2.5 | 16        |
| 34 | Low Intensity Resistance Exercise Training with Blood Flow Restriction: Insight into Cardiovascular<br>Function, and Skeletal Muscle Hypertrophy in Humans. Korean Journal of Physiology and<br>Pharmacology, 2015, 19, 191.                                           | 1.2 | 13        |
| 35 | Autonomic responses to exercise: Group III/IV muscle afferents and fatigue. Autonomic Neuroscience:<br>Basic and Clinical, 2015, 188, 19-23.                                                                                                                           | 2.8 | 134       |
| 36 | Spinal μâ€opioid receptorâ€sensitive lower limb muscle afferents determine corticospinal responsiveness<br>and promote central fatigue in upper limb muscle. Journal of Physiology, 2014, 592, 5011-5024.                                                              | 2.9 | 94        |

Joshua C Weavil

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Operating lung volumes are affected by exercise mode but not trunk and hip angle during maximal exercise. European Journal of Applied Physiology, 2014, 114, 2387-2397.     | 2.5 | 17        |
| 38 | Comments on Point:Counterpoint: Hypobaric hypoxia induces/does not induce different responses from normobaric hypoxia. Journal of Applied Physiology, 2012, 112, 1788-1794. | 2.5 | 34        |
| 39 | On the hemodynamic consequence of the chemoreflex and muscle mechanoreflex interaction in women and men: two tales, one story. Journal of Physiology, 0, , .                | 2.9 | 4         |