Canan Dagdeviren

List of Publications by Citations

Source: https://exaly.com/author-pdf/3368948/canan-dagdeviren-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

41 4,908 22 42 g-index

42 5,623 13 5.37 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
41	Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. <i>Nature Communications</i> , 2013 , 4, 1543	17.4	978
40	High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). <i>Nature Communications</i> , 2013 , 4, 1633	17.4	821
39	Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 1927-32	11.5	584
38	Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. <i>Nature Communications</i> , 2014 , 5, 4496	17.4	57 ¹
37	Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. <i>Nature Materials</i> , 2015 , 14, 728-36	27	310
36	Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. <i>Extreme Mechanics Letters</i> , 2016 , 9, 269-281	3.9	281
35	Transient, biocompatible electronics and energy harvesters based on ZnO. <i>Small</i> , 2013 , 9, 3398-404	11	280
34	Energy Harvesting from the Animal/Human Body for Self-Powered Electronics. <i>Annual Review of Biomedical Engineering</i> , 2017 , 19, 85-108	12	227
33	Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. <i>ACS Nano</i> , 2011 , 5, 3326-32	16.7	162
32	Recent Progress in Electrochemical pH-Sensing Materials and Configurations for Biomedical Applications. <i>Chemical Reviews</i> , 2019 , 119, 5248-5297	68.1	86
31	Flexible piezoelectric devices for gastrointestinal motility sensing. <i>Nature Biomedical Engineering</i> , 2017 , 1, 807-817	19	81
30	Cooperativity in the enhanced piezoelectric response of polymer nanowires. <i>Advanced Materials</i> , 2014 , 26, 7574-80	24	68
29	Miniaturized neural system for chronic, local intracerebral drug delivery. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	46
28	Measured Output Voltages of Piezoelectric Devices Depend on the Resistance of Voltmeter. <i>Advanced Functional Materials</i> , 2015 , 25, 5320-5325	15.6	41
27	The Future of Neuroimplantable Devices: A Materials Science and Regulatory Perspective. <i>Advanced Materials</i> , 2020 , 32, e1901482	24	39
26	A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. <i>Npj Flexible Electronics</i> , 2020 , 4,	10.7	39
25	Thin Film Receiver Materials for Deterministic Assembly by Transfer Printing. <i>Chemistry of Materials</i> , 2014 , 26, 3502-3507	9.6	32

(2020-2015)

24	Splitting of neutral mechanical plane of conformal, multilayer piezoelectric mechanical energy harvester. <i>Applied Physics Letters</i> , 2015 , 107, 041905	3.4	31	
23	Catheter-Based Systems With Integrated Stretchable Sensors and Conductors in Cardiac Electrophysiology. <i>Proceedings of the IEEE</i> , 2015 , 103, 682-689	14.3	28	
22	Processing Conditions and Aging Effect on the Morphology of PZT Electrospun Nanofibers, and Dielectric Properties of the Resulting 3B PZT/Polymer Composite. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 2566-2570	3.8	28	
21	Decoding of facial strains via conformable piezoelectric interfaces. <i>Nature Biomedical Engineering</i> , 2020 , 4, 954-972	19	24	
20	Dielectric behavior characterization of a fibrous-ZnO/PVDF nanocomposite. <i>Polymer Composites</i> , 2010 , 31, 1003-1010	3	22	
19	Shear Piezoelectricity in Poly(vinylidenefluoride-co-trifluoroethylene): Full Piezotensor Coefficients by Molecular Modeling, Biaxial Transverse Response, and Use in Suspended Energy-Harvesting Nanostructures. <i>Advanced Materials</i> , 2016 , 28, 7633-9	24	19	
18	An Analytic Model for Skin Modulus Measurement Via Conformal Piezoelectric Systems. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2015 , 82,	2.7	17	
17	The future of bionic dynamos. <i>Science</i> , 2016 , 354, 1109	33.3	16	
16	Towards personalized medicine: the evolution of imperceptible health-care technologies. <i>Foresight</i> , 2018 , 20, 589-601	2.1	15	
15	. Journal of Microelectromechanical Systems, 2015 , 24, 1016-1028	2.5	13	
14	Computational models for the determination of depth-dependent mechanical properties of skin with a soft, flexible measurement device. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2016 , 472, 20160225	2.4	13	
13	The universal and easy-to-use standard of voltage measurement for quantifying the performance of piezoelectric devices. <i>Extreme Mechanics Letters</i> , 2017 , 15, 10-16	3.9	11	
12	Focal, remote-controlled, chronic chemical modulation of brain microstructures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 7254-7259	11.5	9	
11	A Protocol to Characterize pH Sensing Materials and Systems. <i>Small Methods</i> , 2019 , 3, 1800265	12.8	5	
10	Electronic Textile Sensors for Decoding Vital Body Signals: State-of-the-Art Review on Characterizations and Recommendations. <i>Advanced Intelligent Systems</i> ,2100223	6	3	
9	On-Body Piezoelectric Energy Harvesters through Innovative Designs and Conformable Structures. <i>ACS Biomaterials Science and Engineering</i> , 2021 ,	5.5	3	
8	Ubiquitous conformable systems for imperceptible computing. Foresight, 2021, ahead-of-print,	2.1	2	
7	Research Resiliency through Lean Labs. <i>Advanced Intelligent Systems</i> , 2020 , 2, 2000074	6	1	

6	Experimentally verified finite element modeling and analysis of a conformable piezoelectric sensor. Smart Materials and Structures, 2021 , 30, 085017	3.4	1
5	PerForm 2018,		1
4	Simultaneous recording and marking of brain microstructures. <i>Journal of Neural Engineering</i> , 2020 , 17, 044001	5	O
3	Pb(Zr,Ti)O3 nanofibers produced by electrospinning process. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1129, 1		O
2	Energy Harvesting: Measured Output Voltages of Piezoelectric Devices Depend on the Resistance of Voltmeter (Adv. Funct. Mater. 33/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 5404-5404	15.6	
1	Polymer Nanowires: Cooperativity in the Enhanced Piezoelectric Response of Polymer Nanowires (Adv. Mater. 45/2014). <i>Advanced Materials</i> , 2014 , 26, 7573-7573	24	