
Li-Na Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/336866/publications.pdf Version: 2024-02-01

Ιι-ΝΑ ΙΙΑ

#	Article	lF	CITATIONS
1	Improvement in the oxidation resistance of Nb–Ti–Si–Cr–Al–Hf alloys containing alloyed Ge and B. Corrosion Science, 2014, 88, 460-465.	6.6	75
2	Improvement in the oxidation resistance of Nb-Si based alloy by selective laser melting. Corrosion Science, 2017, 127, 260-269.	6.6	52
3	Artificial neural network application to study quantitative relationship between silicide and fracture toughness of Nb-Si alloys. Materials and Design, 2017, 129, 210-218.	7.0	49
4	Simultaneous improvement in fracture toughness and oxidation resistance of Nb-Si based alloys by vanadium addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 701, 149-157.	5.6	42
5	Study of the fracture mechanism of NbSS/Nb5Si3 in situ composite: Based on a mechanical characterization of interfacial strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 663, 98-107.	5.6	41
6	Artificial neural network application to microstructure design of Nb-Si alloy to improve ultimate tensile strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 452-458.	5.6	34
7	The microstructure optimizing of the Nb–14Si–22Ti–4Cr–2Al–2Hf alloy processed by directional solidification. Materials Letters, 2012, 84, 124-127.	2.6	29
8	Microstructure, Mechanical Properties and Oxidation Resistance of Nb-22Ti-14Si-2Hf-2Al-xCr Alloys. Chinese Journal of Aeronautics, 2012, 25, 292-296.	5.3	27
9	Microstructure and fracture toughness of Nb-Si based alloys with Ta and W additions. Intermetallics, 2018, 92, 1-6.	3.9	24
10	Improvement of oxidation resistance of Nb–Ti–Si based alloys with additions of Al, Cr and B at different temperatures. Progress in Natural Science: Materials International, 2021, 31, 442-453.	4.4	20
11	Effect of Holding Pressure on Microstructure and Mechanical Properties of A356 Aluminum Alloy. Journal of Materials Engineering and Performance, 2018, 27, 483-491.	2.5	18
12	Microstructural Evolution and Mechanical Behaviors of an Nb-16Si-22Ti-2Al-2Hf Alloy with 2 and 17Âat.Âpct Cr Additions at Room and/or High Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4842-4850.	2.2	16
13	Effects of minor Si on microstructures and room temperature fracture toughness of niobium solid solution alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 114-121.	5.6	16
14	High-temperature oxidation behavior of Nb–Si-based alloy with separate vanadium, tantalum, tungsten and zirconium addition. Rare Metals, 2021, 40, 607-615.	7.1	13
15	Eutectic formation during directional solidification: Effect of the withdrawal rate. Materials Letters, 2013, 92, 317-320.	2.6	12
16	Microstructure evolution of eutectic Nb–24Ti–15Si–4Cr–2Al–2Hf alloy processed by directional solidification. Rare Metals, 2017, 36, 472-477.	7.1	12
17	Energy Density Dependence of Bonding Characteristics of Selective Laser-Melted Nb–Si-Based Alloy on Titanium Substrate. Acta Metallurgica Sinica (English Letters), 2018, 31, 477-486.	2.9	12
18	Oxidation behavior of Nb–24Ti–18Si–2Al–2Hf–4Cr and Nb–24Ti–18Si–2Al–2Hf–8Cr hyper alloys at 1250°C. Rare Metals, 2017, 36, 168-173.	eutectic 7.1	11

LI-NA JIA

#	Article	IF	CITATIONS
19	Evolution of microstructure and mechanical properties of A356 aluminium alloy processed by hot spinning process. China Foundry, 2017, 14, 138-144.	1.4	9
20	Fracture Mode Transition in Nb–1Si Alloys Triggered by Annealing Heat Treatment. Advanced Engineering Materials, 2017, 19, 1700442.	3.5	7
21	Microstructure and High-Temperature Oxidation Behavior of Dy-Doped Nb–Si-Based Alloys. Acta Metallurgica Sinica (English Letters), 2018, 31, 742-752.	2.9	7
22	Quantitative Relationship Analysis of Mechanical Properties with Mg Content and Heat Treatment Parameters in Al–7Si Alloys Using Artificial Neural Network. Materials, 2019, 12, 718.	2.9	7
23	Effects of Ni content on microstructure and wear behavior of Al–13Si–3Cu–1Mg-xNi-0.6Fe-0.6Mn alloys. Wear, 2022, 500-501, 204365.	3.1	5
24	Microstructure Evolution in Nb-12Si-22Ti-14Cr-2Al2Hf Alloy Fabricated by Directional Solidification. High Temperature Materials and Processes, 2014, 33, 495-498.	1.4	4
25	Microstructures and high-temperature oxidation behavior of directionally solidified Nb–Si-based alloys with Re additions. Rare Metals, 2023, 42, 273-280.	7.1	3
26	Microstructure and room temperature fracture toughness of Nb–Si-based alloys with Sr addition. Rare Metals, 2018, , 1.	7.1	3
27	Effect of holding pressure on density and cooling rate of cast Al-Si alloy during additive pressure casting. China Foundry, 2019, 16, 363-370.	1.4	3
28	Effect of the Initial Texture, Recrystallization and Re-Dissolution Process on the Evolution of Texture during Solution Treatment of the 7A65 Hot Rolled Plate. Metals, 2022, 12, 8.	2.3	3
29	Surface Remeltingâ€Mediated Improvement in Oxidation Resistance of Cr ₂ Nb ontaining Nb‧iâ€Based Allovs at High Temperatures. Advanced Engineering Materials. 2019. 21. 1900425.	3.5	2