Gesine Lühken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3368584/publications.pdf

Version: 2024-02-01

CESINE LÃ1/HKEN

#	Article	IF	CITATIONS
1	Capturing Genetic Diversity and Selection Signatures of the Endangered Kosovar Balusha Sheep Breed. Genes, 2022, 13, 866.	2.4	4
2	The Complex and Diverse Genetic Architecture of the Absence of Horns (Polledness) in Domestic Ruminants, including Goats and Sheep. Genes, 2022, 13, 832.	2.4	11
3	The <scp><i>KIT</i></scp> :c. <scp>376G</scp> >A variant in German and Swiss alpacas (<i>Vicugna) Tj ETQq1</i>	1,0.78432 1.7	14 rgBT /C∨
4	Association of a polymorphism in exon 3 of the IGF1R gene with growth, body size, slaughter and meat quality traits in Colored Polish Merino sheep. Meat Science, 2021, 172, 108314.	5.5	6
5	Prevalence of coat colour traits and congenital disorders of South American camelids in Austria, Germany and Switzerland. Acta Veterinaria Scandinavica, 2020, 62, 56.	1.6	4
6	New genomic features of the polled intersex syndrome variant in goats unraveled by longâ€read wholeâ€genome sequencing. Animal Genetics, 2020, 51, 439-448.	1.7	14
7	Phylogenetic analysis of small ruminant lentiviruses in Germany and Iran suggests their expansion with domestic sheep. Scientific Reports, 2020, 10, 2243.	3.3	22
8	Lentivirus Susceptibility in Iranian and German Sheep Assessed by Determination of TMEM154 E35K. Animals, 2019, 9, 685.	2.3	21
9	Morphometric measurements in lambs as a basis for future mapping studies. Small Ruminant Research, 2019, 181, 57-64.	1.2	8
10	First survey on association of TMEM154 and CCR5 variants with serological maedi-visna status of sheep in German flocks. Veterinary Research, 2018, 49, 36.	3.0	19
11	The 1.78-kb insertion in the $3\hat{e}^2$ -untranslated region of RXFP2 does not segregate with horn status in sheep breeds with variable horn status. Genetics Selection Evolution, 2016, 48, 78.	3.0	22
12	Genetic testing for phenotype-causing variants in sheep and goats. Molecular and Cellular Probes, 2012, 26, 231-237.	2.1	9
13	Familiar Hypopigmentation Syndrome in Sheep Associated with Homozygous Deletion of the Entire Endothelin Type-B Receptor Gene. PLoS ONE, 2012, 7, e53020.	2.5	12
14	Association study in naturally infected helminth layers shows evidence for influence of interferon-gamma gene variants on Ascaridia galli worm burden. Veterinary Research, 2011, 42, 84.	3.0	9
15	Genetic variation in monoamine oxidase A and analysis of association with behaviour traits in beef cattle. Journal of Animal Breeding and Genetics, 2010, 127, 411-418.	2.0	8
16	Genetic Characterization of a Sheep-Dwarf Goat Hybrid. Cytogenetic and Genome Research, 2009, 125, 158-161.	1.1	3
17	Characterization and genetic analysis of bovine α _{s1} â€casein <i>I</i> variant. Animal Genetics, 2009, 40, 479-485.	1.7	15
18	Prion protein polymorphisms in autochthonous European sheep breeds in respect to scrapie eradication in affected flocks. Small Ruminant Research, 2008, 75, 43-47.	1.2	19

Gesine Lühken

#	Article	IF	CITATIONS
19	Analysis of prion protein genotypes in relation to reproduction traits in local and cosmopolitan German sheep breeds. Animal Reproduction Science, 2008, 103, 69-77.	1.5	12
20	Classic Scrapie in Sheep with the ARR/ARR Prion Genotype in Germany and France. Emerging Infectious Diseases, 2007, 13, 1201-1207.	4.3	85
21	Microsatellites MCMA53 and MCMA16 on OAR15 are associated with susceptibility to atypical scrapie. Animal Genetics, 2007, 38, 88-89.	1.7	4
22	Epidemiological and genetical differences between classical and atypical scrapie cases. Veterinary Research, 2007, 38, 65-80.	3.0	91
23	Microsatellite CTSBJ12 is located distal to the ovine prion protein gene on OAR13 and is not associated with scrapie susceptibility. Animal Genetics, 2006, 37, 426-427.	1.7	3
24	Strain Typing of German Transmissible Spongiform Encephalopathies Field Cases in Small Ruminants by Biochemical Methods. Zoonoses and Public Health, 2005, 52, 55-63.	1.4	45
25	Functional analysis of a single nucleotide polymorphism in a potential binding site for GATA transcription factors in the ovine interleukin 2 gene. Veterinary Immunology and Immunopathology, 2005, 107, 51-56.	1.2	7
26	Atypical scrapie cases in Germany and France are identified by discrepant reaction patterns in BSE rapid tests. Journal of Virological Methods, 2004, 117, 27-36.	2.1	159
27	Prion protein allele A136H154Q171 is associated with high susceptibility to scrapie in purebred and crossbred German Merinoland sheep. Archives of Virology, 2004, 149, 1571-80.	2.1	59
28	Neuronal accumulation of abnormal prion protein in sheep carrying a scrapie-resistant genotype (PrPARR/ARR). Journal of General Virology, 2004, 85, 2727-2733.	2.9	80
29	Genetic and physical mapping of the ovine interleukinâ€⊋ gene (<i>IL2</i>). Animal Genetics, 2002, 33, 245-247.	1.7	2
30	Rapid communication: a single-strand conformation polymorphism in the ovine interleukin-2 (IL-2) gene Journal of Animal Science, 2000, 78, 2754.	0.5	4