

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3368108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolomic analysis reveals potential biomarkers and the underlying pathogenesis involved in <i>Mycoplasma pneumoniae</i> pneumonia. Emerging Microbes and Infections, 2022, 11, 593-605.	3.0	27
2	Multi-Platform Omics Analysis Reveals Molecular Signatures for Pathogenesis and Activity of Systemic Lupus Erythematosus. Frontiers in Immunology, 2022, 13, 833699.	2.2	11
3	Proteomic and Metabolomic Signatures Associated With the Immune Response in Healthy Individuals Immunized With an Inactivated SARS-CoV-2 Vaccine. Frontiers in Immunology, 2022, 13, .	2.2	15
4	Rapid, Ultrasensitive, and Highly Specific Diagnosis of COVID-19 by CRISPR-Based Detection. ACS Sensors, 2021, 6, 881-888.	4.0	81
5	Increased Macrolide Resistance Rate of M3562 Mycoplasma pneumoniae Correlated With Macrolide Usage and Genotype Shifting. Frontiers in Cellular and Infection Microbiology, 2021, 11, 675466.	1.8	16
6	LAMP-CRISPR-Cas12-based diagnostic platform for detection of Mycobacterium tuberculosis complex using real-time fluorescence or lateral flow test. Mikrochimica Acta, 2021, 188, 347.	2.5	43
7	A one-step, one-pot CRISPR nucleic acid detection platform (CRISPR-top): Application for the diagnosis of COVID-19. Talanta, 2021, 233, 122591.	2.9	51
8	A Novel Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Detection Platform: Application to Diagnosis of COVID-19. Frontiers in Bioengineering and Biotechnology, 2021, 9, 748746.	2.0	4
9	A CRISPR-Cas12b–Based Platform for Ultrasensitive, Rapid, and Highly Specific Detection of Hepatitis B Virus Genotypes B and C in Clinical Application. Frontiers in Bioengineering and Biotechnology, 2021, 9, 743322.	2.0	16
10	Loop-Mediated Isothermal Amplification Coupled With Nanoparticle-Based Lateral Biosensor for Rapid, Sensitive, and Specific Detection of Bordetella pertussis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 797957.	2.0	5
11	Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosensors and Bioelectronics, 2020, 166, 112437.	5.3	332
12	Graphene oxide and self-avoiding molecular recognition systems-assisted recombinase polymerase amplification coupled with lateral flow bioassay for nucleic acid detection. Mikrochimica Acta, 2020, 187, 667.	2.5	17
13	Establishment and application of a multiple cross displacement amplification combined with nanoparticles-based biosensor method for the detection of Bordetella pertussis. BMC Microbiology, 2020, 20, 263.	1.3	5
14	Highly sensitive and specific diagnosis of COVID-19 by reverse transcription multiple cross-displacement amplification-labelled nanoparticles biosensor. European Respiratory Journal, 2020, 56, 2002060.	3.1	52
15	<p>Lateral flow biosensor combined with loop-mediated isothermal amplification for simple, rapid, sensitive, and reliable detection of Brucella spp</p> . Infection and Drug Resistance, 2019, Volume 12, 2343-2353.	1.1	31
16	<p>Development of a multiple cross displacement amplification combined with nanoparticles-based biosensor assay to detect Neisseria meningitidis</p> . Infection and Drug Resistance, 2019, Volume 12, 2077-2087.	1.1	13
17	Establishment and Application of a Multiple Cross Displacement Amplification Coupled With Nanoparticle-Based Lateral Flow Biosensor Assay for Detection of Mycoplasma pneumoniae. Frontiers in Cellular and Infection Microbiology, 2019, 9, 325.	1.8	21
18	Development and Clinical Validation of Multiple Cross Displacement Amplification Combined With Nanoparticles-Based Biosensor for Detection of Mycobacterium tuberculosis: Preliminary Results. Frontiers in Microbiology, 2019, 10, 2135.	1.5	18

YI WANG

#	Article	IF	CITATIONS
19	Label-Free Cross-Priming Amplification Coupled With Endonuclease Restriction and Nanoparticles-Based Biosensor for Simultaneous Detection of Nucleic Acids and Prevention of Carryover Contamination. Frontiers in Chemistry, 2019, 7, 322.	1.8	4
20	Detection of Nucleic Acids and Prevention of Carryover Contamination Using Cross-Priming Amplification Combined with Nanoparticles-Based Biosensor and Antarctic Thermal Sensitive Uracil-DNA-Glycosylase. Journal of Biomedical Nanotechnology, 2019, 15, 878-892.	0.5	5
21	Rapid Detection of Brucella spp. and Elimination of Carryover Using Multiple Cross Displacement Amplification Coupled With Nanoparticles-Based Lateral Flow Biosensor. Frontiers in Cellular and Infection Microbiology, 2019, 9, 78.	1.8	26
22	Simultaneous Nucleic Acids Detection and Elimination of Carryover Contamination With Nanoparticles-Based Biosensor- and Antarctic Thermal Sensitive Uracil-DNA-Glycosylase-Supplemented Polymerase Spiral Reaction. Frontiers in Bioengineering and Biotechnology, 2019, 7, 401.	2.0	2
23	Prevalence and Characteristics of <i>Listeria ivanovii</i> Strains in Wild Rodents in China. Vector-Borne and Zoonotic Diseases, 2019, 19, 8-15.	0.6	15
24	Development of loop-mediated isothermal amplification coupled with nanoparticle-based lateral flow biosensor assay for Mycoplasma pneumoniae detection. AMB Express, 2019, 9, 196.	1.4	23
25	A label-free technique for accurate detection of nucleic acid–based self-avoiding molecular recognition systems supplemented multiple cross-displacement amplification and nanoparticles based biosensor. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-14.	1.9	23
26	Detection of nucleic acids and elimination of carryover contamination by using loop-mediated isothermal amplification and antarctic thermal sensitive uracil-DNA-glycosylase in a lateral flow biosensor: application to the detection of Streptococcus pneumoniae. Mikrochimica Acta, 2018, 185, 212.	2.5	33
27	Endonuclease restriction-mediated real-time PCR for simultaneous detection of <i>Listeria monocytogenes</i> and <i>Listeria ivanovii</i> . Analytical Methods, 2018, 10, 1339-1345.	1.3	1
28	lsolation and characterization of Listeria monocytogenes from the black-headed gull feces in Kunming, China. Journal of Infection and Public Health, 2018, 11, 59-63.	1.9	19
29	Nanoparticles-based lateral flow biosensor coupled with multiple cross displacement amplification Plus for simultaneous detection of nucleic acid and prevention of carryover contamination. Sensors and Actuators B: Chemical, 2018, 255, 3332-3343.	4.0	12
30	Antarctic thermolabile uracil-DNA-glycosylase-supplemented multiple cross displacement amplification using a label-based nanoparticle lateral flow biosensor for the simultaneous detection of nucleic acid sequences and elimination of carryover contamination. Nano Research, 2018, 11, 2632-2647.	5.8	38
31	Identification and Characterization of als Genes Involved in D-Allose Metabolism in Lineage II Strain of Listeria monocytogenes. Frontiers in Microbiology, 2018, 9, 621.	1.5	16
32	Multiple Cross Displacement Amplification Coupled With Nanoparticles-Based Lateral Flow Biosensor for Detection of Staphylococcus aureus and Identification of Methicillin-Resistant S. aureus. Frontiers in Microbiology, 2018, 9, 907.	1.5	37
33	Risk Factors and Level of Listeria monocytogenes Contamination of Raw Pork in Retail Markets in China. Frontiers in Microbiology, 2018, 9, 1090.	1.5	21
34	Rapid, sensitive and reliable detection of Klebsiella pneumoniae by label-free multiple cross displacement amplification coupled with nanoparticles-based biosensor. Journal of Microbiological Methods, 2018, 149, 80-88.	0.7	17
35	A 12-month longitudinal study of Listeria monocytogenes contamination and persistence in pork retail markets in China. Food Control, 2017, 76, 66-73.	2.8	31
36	Loop-mediated isothermal amplification using self-avoiding molecular recognition systems and antarctic thermal sensitive uracil-DNA-glycosylase for detection of nucleic acid with prevention of carryover contamination. Analytica Chimica Acta, 2017, 996, 74-87.	2.6	33

YI WANG

#	Article	IF	CITATIONS
37	Visual and multiplex detection of nucleic acid sequence by multiple cross displacement amplification coupled with gold nanoparticle-based lateral flow biosensor. Sensors and Actuators B: Chemical, 2017, 241, 1283-1293.	4.0	31
38	Nanoparticle-based lateral flow biosensor combined with multiple cross displacement amplification for rapid, visual and sensitive detection of Vibrio cholerae. FEMS Microbiology Letters, 2017, 364, .	0.7	10
39	Loop-Mediated Isothermal Amplification Label-Based Gold Nanoparticles Lateral Flow Biosensor for Detection of Enterococcus faecalis and Staphylococcus aureus. Frontiers in Microbiology, 2017, 8, 192.	1.5	55
40	Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Listeria monocytogenes . International Journal of Nanomedicine, 2017, Volume 12, 473-486.	3.3	45
41	Development of a Novel Listeria Enrichment Broth for the Isolation of Pathogenic Listeria. Journal of Food Protection, 2017, 80, 1768-1776.	0.8	17
42	Streptococcus himalayensis sp. nov., isolated from the respiratory tract of Marmota himalayana. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 256-261.	0.8	19
43	Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification. Frontiers in Microbiology, 2016, 7, 753.	1.5	31
44	Endonuclease Restriction-Mediated Real-Time Polymerase Chain Reaction: A Novel Technique for Rapid, Sensitive and Quantitative Detection of Nucleic-Acid Sequence. Frontiers in Microbiology, 2016, 7, 1104.	1.5	9
45	Development of Multiple Cross Displacement Amplification Label-Based Gold Nanoparticles Lateral Flow Biosensor for Detection of Shigella spp Frontiers in Microbiology, 2016, 7, 1834.	1.5	32
46	Multiple Cross Displacement Amplification Combined with Gold Nanoparticle-Based Lateral Flow Biosensor for Detection of Vibrio parahaemolyticus. Frontiers in Microbiology, 2016, 7, 2047.	1.5	31
47	Rapid and Sensitive Detection of Vibrio parahaemolyticus and Vibrio vulnificus by Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification Technique. Molecules, 2016, 21, 111.	1.7	33
48	Rapid and sensitive detection of Plesiomonas shigelloides by cross-priming amplification of the hugA gene. Molecular Medicine Reports, 2016, 14, 5443-5450.	1.1	3
49	Effects of Maternal Marginal Iodine Deficiency on Dendritic Morphology in the Hippocampal CA1 Pyramidal Neurons in Rat Offspring. NeuroMolecular Medicine, 2016, 18, 203-215.	1.8	7
50	Streptococcus marmotae sp. nov., isolated from the respiratory tract of Marmota himalayana. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4315-4322.	0.8	15
51	The Novel Multiple Inner Primers-Loop-Mediated Isothermal Amplification (MIP-LAMP) for Rapid Detection and Differentiation of Listeria monocytogenes. Molecules, 2015, 20, 21515-21531.	1.7	23
52	Rapid and Sensitive Detection of Shigella spp. and Salmonella spp. by Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification Technique. Frontiers in Microbiology, 2015, 6, 1400.	1.5	39
53	Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification. Journal of Molecular Diagnostics, 2015, 17, 392-401.	1.2	54
54	Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification. Scientific Reports, 2015, 5, 11902.	1.6	105

YI WANG

#	Article	IF	CITATIONS
55	Helicobacter himalayensis sp. nov. isolated from gastric mucosa of Marmota himalayana. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1719-1725.	0.8	23
56	Rapid and sensitive detection ofListeria monocytogenesby cross-priming amplification oflmo0733gene. FEMS Microbiology Letters, 2014, 361, 43-51.	0.7	31
57	Rapid and Sensitive Detection of Listeria ivanovii by Loop-Mediated Isothermal Amplification of the smcL Gene. PLoS ONE, 2014, 9, e115868.	1.1	25