Ci-jun Shuai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3367389/publications.pdf

Version: 2024-02-01

29157 23567 14,600 319 58 104 citations h-index g-index papers 321 321 321 16545 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydroxyapatite Whisker Reinforced 63s Glass Scaffolds for Bone Tissue Engineering. BioMed Research International, 2015, 2015, 1-8.	1.9	2,383
2	Bone biomaterials and interactions with stem cells. Bone Research, 2017, 5, 17059.	11.4	503
3	A Multimaterial Scaffold With Tunable Properties: Toward Bone Tissue Repair. Advanced Science, 2018, 5, 1700817.	11.2	264
4	A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy, 2020, 74, 104825.	16.0	264
5	Mg bone implant: Features, developments and perspectives. Materials and Design, 2020, 185, 108259.	7.0	251
6	Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration. International Journal of Molecular Sciences, 2014, 15, 4714-4732.	4.1	243
7	Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioactive Materials, 2021, 6, 490-502.	15.6	236
8	A graphene oxide-Ag co-dispersing nanosystem: Dual synergistic effects on antibacterial activities and mechanical properties of polymer scaffolds. Chemical Engineering Journal, 2018, 347, 322-333.	12.7	209
9	Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomaterialia, 2017, 61, 1-20.	8.3	170
10	Biodegradable metallic bone implants. Materials Chemistry Frontiers, 2019, 3, 544-562.	5.9	150
11	Antibacterial polymer scaffold based on mesoporous bioactive glass loaded with in situ grown silver. Chemical Engineering Journal, 2019, 374, 304-315.	12.7	133
12	Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold. Bioactive Materials, 2021, 6, 1230-1241.	15.6	132
13	Circulating miR-17, miR-20a, miR-29c, and miR-223 Combined as Non-Invasive Biomarkers in Nasopharyngeal Carcinoma. PLoS ONE, 2012, 7, e46367.	2.5	126
14	Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance. Scientific Reports, 2014, 4, 4712.	3.3	125
15	A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Scientific Reports, 2014, 4, 5599.	3.3	124
16	3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties. Composites Part B: Engineering, 2019, 162, 611-620.	12.0	124
17	In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold. Journal of Advanced Research, 2022, 35, 13-24.	9.5	124
18	Additive manufacturing of bone scaffolds. International Journal of Bioprinting, 2018, 5, 148.	3.4	120

#	Article	IF	Citations
19	Molybdenum disulfide nanosheets embedded with nanodiamond particles: co-dispersion nanostructures as reinforcements for polymer scaffolds. Applied Materials Today, 2019, 17, 216-226.	4.3	116
20	Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnology, 2011, 22, 285703.	2.6	115
21	Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates. Composite Structures, 2018, 194, 49-67.	5.8	111
22	Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions. Composites Part B: Engineering, 2019, 168, 106-120.	12.0	106
23	Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Materials Characterization, 2013, 77, 23-31.	4.4	104
24	Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy. Journal of Alloys and Compounds, 2017, 691, 961-969.	5.5	104
25	A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 51-60.	3.1	103
26	Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110587.	5.0	102
27	Effects of initial microstructures on hot tensile deformation behaviors and fracture characteristics of Ti-6Al-4V alloy. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2018, 711, 293-302.	5.6	101
28	A magnetic micro-environment in scaffolds for stimulating bone regeneration. Materials and Design, 2020, 185, 108275.	7.0	101
29	Laser additive manufacturing of Zn-2Al part for bone repair: Formability, microstructure and properties. Journal of Alloys and Compounds, 2019, 798, 606-615.	5.5	93
30	Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering. Biofabrication, 2013, 5, 015014.	7.1	92
31	Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold. Materials Science and Engineering C, 2019, 100, 809-825.	7.3	90
32	Surface modification of nanodiamond: Toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds. International Journal of Biological Macromolecules, 2019, 126, 1116-1124.	7.5	86
33	Characterization of Mechanical and Biological Properties of 3-D Scaffolds Reinforced with Zinc Oxide for Bone Tissue Engineering. PLoS ONE, 2014, 9, e87755.	2.5	85
34	Graphene oxide reinforced poly(vinyl alcohol): nanocomposite scaffolds for tissue engineering applications. RSC Advances, 2015, 5, 25416-25423.	3.6	82
35	Laser additive manufacturing of Mg-based composite with improved degradation behaviour. Virtual and Physical Prototyping, 2020, 15, 278-293.	10.4	82
36	Graphene oxide assists polyvinylidene fluoride scaffold to reconstruct electrical microenvironment of bone tissue. Materials and Design, 2020, 190, 108564.	7.0	81

#	Article	IF	CITATIONS
37	Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique. Journal of Materials Science and Technology, 2018, 34, 1944-1952.	10.7	80
38	Nano-SiC reinforced Zn biocomposites prepared via laser melting: Microstructure, mechanical properties and biodegradability. Journal of Materials Science and Technology, 2019, 35, 2608-2617.	10.7	80
39	MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Molecular Medicine Reports, 2016, 14, 623-629.	2.4	79
40	An Overview of Long Noncoding RNAs Involved in Bone Regeneration from Mesenchymal Stem Cells. Stem Cells International, 2018, 2018, 1-11.	2.5	79
41	Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method. Composites Part B: Engineering, 2019, 157, 219-238.	12.0	79
42	LncRNA ODIR1 inhibits osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death and Disease, 2019, 10, 947.	6.3	79
43	Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy. Journal of Materials Science and Technology, 2019, 35, 777-783.	10.7	77
44	Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: The role of coupling agent. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111083.	5.0	76
45	Highly biodegradable and bioactive Fe-Pd-bredigite biocomposites prepared by selective laser melting. Journal of Advanced Research, 2019, 20, 91-104.	9.5	7 5
46	Three-dimensional exact solution for vibration analysis of thick functionally graded porous (FGP) rectangular plates with arbitrary boundary conditions. Composites Part B: Engineering, 2018, 155, 369-381.	12.0	74
47	Graphene oxide as an interface phase between polyetheretherketone and hydroxyapatite for tissue engineering scaffolds. Scientific Reports, 2017, 7, 46604.	3.3	73
48	A unified solution for the vibration analysis of functionally graded porous (FGP) shallow shells with general boundary conditions. Composites Part B: Engineering, 2019, 156, 406-424.	12.0	73
49	Graphene oxide-driven interfacial coupling in laser 3D printed PEEK/PVA scaffolds for bone regeneration. Virtual and Physical Prototyping, 2020, 15, 211-226.	10.4	70
50	TiO ₂ -Induced In Situ Reaction in Graphene Oxide-Reinforced AZ61 Biocomposites to Enhance the Interfacial Bonding. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23464-23473.	8.0	69
51	Regulating Degradation Behavior by Incorporating Mesoporous Silica for Mg Bone Implants. ACS Biomaterials Science and Engineering, 2018, 4, 1046-1054.	5.2	67
52	Magnetically actuated bone scaffold: Microstructure, cell response and osteogenesis. Composites Part B: Engineering, 2020, 192, 107986.	12.0	67
53	Mechanical Alloying of Immiscible Metallic Systems: Process, Microstructure, and Mechanism. Advanced Engineering Materials, 2021, 23, 2001098.	3.5	67
54	Metal organic frameworks as a compatible reinforcement in a biopolymer bone scaffold. Materials Chemistry Frontiers, 2020, 4, 973-984.	5.9	67

#	Article	IF	CITATIONS
55	Rare earth improves strength and creep resistance of additively manufactured Zn implants. Composites Part B: Engineering, 2021, 216, 108882.	12.0	66
56	Organic montmorillonite produced an interlayer locking effect in a polymer scaffold to enhance interfacial bonding. Materials Chemistry Frontiers, 2020, 4, 2398-2408.	5.9	64
57	Dynamic analysis of laminated doubly-curved shells with general boundary conditions by means of a domain decomposition method. International Journal of Mechanical Sciences, 2018, 138-139, 159-186.	6.7	62
58	System development, formability quality and microstructure evolution of selective laser-melted magnesium. Virtual and Physical Prototyping, 2016, 11, 173-181.	10.4	61
59	Dynamics analysis of functionally graded porous (FGP) circular, annular and sector plates with general elastic restraints. Composites Part B: Engineering, 2019, 159, 20-43.	12.0	61
60	nMgO-incorporated PLLA bone scaffolds: Enhanced crystallinity and neutralized acidic products. Materials and Design, 2019, 174, 107801.	7.0	58
61	A modified series solution for free vibration analyses of moderately thick functionally graded porous (FGP) deep curved and straight beams. Composites Part B: Engineering, 2019, 165, 155-166.	12.0	58
62	In Situ Generation of Hydroxyapatite on Biopolymer Particles for Fabrication of Bone Scaffolds Owning Bioactivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 46743-46755.	8.0	58
63	Electrostatic self-assembly of pFe3O4 nanoparticles on graphene oxide: A co-dispersed nanosystem reinforces PLLA scaffolds. Journal of Advanced Research, 2020, 24, 191-203.	9.5	58
64	A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds. Chemical Engineering Journal, 2017, 313, 487-497.	12.7	57
65	Positive feedback effects of Mg on the hydrolysis of poly-l-lactic acid (PLLA): Promoted degradation of PLLA scaffolds. Polymer Testing, 2018, 68, 27-33.	4.8	57
66	Improved biodegradation resistance by grain refinement of novel antibacterial ZK30-Cu alloys produced via selective laser melting. Materials Letters, 2019, 237, 253-257.	2.6	57
67	Interfacial strengthening by reduced graphene oxide coated with MgO in biodegradable Mg composites. Materials and Design, 2020, 191, 108612.	7.0	57
68	Synthesis of a mace-like cellulose nanocrystal@Ag nanosystem via in-situ growth for antibacterial activities of poly-L-lactide scaffold. Carbohydrate Polymers, 2021, 262, 117937.	10.2	56
69	Development of composite porous scaffolds based on poly(lactide-co-glycolide)/nano-hydroxyapatite via selective laser sintering. International Journal of Advanced Manufacturing Technology, 2013, 69, 51-57.	3.0	53
70	Degradation mechanisms and acceleration strategies of poly (lactic acid) scaffold for bone regeneration. Materials and Design, 2021, 210, 110066.	7.0	53
71	Linc02349 promotes osteogenesis of human umbilical cordâ€derived stem cells by acting as a competing endogenous RNA for miRâ€25â€3p and miRâ€33bâ€5p. Cell Proliferation, 2020, 53, e12814.	5.3	52
72	Structural Design and Experimental Analysis of a Selective Laser Sintering System with Nano-Hydroxyapatite Powder. Journal of Biomedical Nanotechnology, 2010, 6, 370-374.	1.1	50

#	Article	IF	CITATIONS
73	Dysregulated Expression of Long Noncoding RNAs in Ovarian Cancer. International Journal of Gynecological Cancer, 2016, 26, 1564-1570.	2.5	50
74	Selective laser melted Fe-Mn bone scaffold: microstructure, corrosion behavior and cell response. Materials Research Express, 2020, 7, 015404.	1.6	50
75	Core–shell-Structured ZIF-8@PDA-HA with Controllable Zinc Ion Release and Superior Bioactivity for Improving a Poly- <scp>I</scp> -lactic Acid Scaffold. ACS Sustainable Chemistry and Engineering, 2021, 9, 1814-1825.	6.7	50
76	Selective laser melting of Zn–Ag alloys for bone repair: microstructure, mechanical properties and degradation behaviour. Virtual and Physical Prototyping, 2018, 13, 146-154.	10.4	49
77	Formation and characteristic corrosion behavior of alternately lamellar arranged $\hat{l}\pm$ and \hat{l}^2 in as-cast AZ91 Mg alloy. Journal of Alloys and Compounds, 2019, 770, 549-558.	5.5	49
78	Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds. Journal of Materials Science and Technology, 2020, 46, 237-247.	10.7	49
79	A novel design of SiH/CeO ₂ (111) van der Waals type-II heterojunction for water splitting. Physical Chemistry Chemical Physics, 2021, 23, 2812-2818.	2.8	49
80	3D Printed Zn-doped Mesoporous Silica-incorporated Poly-L-lactic Acid Scaffolds for Bone Repair. International Journal of Bioprinting, 2021, 7, 346.	3.4	49
81	The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting. Materials, 2016, 9, 216.	2.9	48
82	A bifunctional bone scaffold combines osteogenesis and antibacterial activity via in situ grown hydroxyapatite and silver nanoparticles. Bio-Design and Manufacturing, 2021, 4, 452-468.	7.7	48
83	Phosphonic Acid Coupling Agent Modification of HAP Nanoparticles: Interfacial Effects in PLLA/HAP Bone Scaffold. Polymers, 2020, 12, 199.	4.5	47
84	Constructing core-shell structured BaTiO3@carbon boosts piezoelectric activity and cell response of polymer scaffolds. Materials Science and Engineering C, 2021, 126, 112129.	7.3	47
85	Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing. Biofabrication, 2011, 3, 015004.	7.1	46
86	A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite–polyetheretherketone scaffolds. International Journal of Nanomedicine, 2016, Volume 11, 3487-3500.	6.7	46
87	Surface modification enhances interfacial bonding in PLLA/MgO bone scaffold. Materials Science and Engineering C, 2020, 108, 110486.	7.3	46
88	Free vibration analysis of laminated composite elliptic cylinders with general boundary conditions. Composites Part B: Engineering, 2019, 158, 55-66.	12.0	45
89	Dual alloying improves the corrosion resistance of biodegradable Mg alloys prepared by selective laser melting. Journal of Magnesium and Alloys, 2021, 9, 305-316.	11.9	45
90	Application of the differential quadrature finite element method to free vibration of elastically restrained plate with irregular geometries. Engineering Analysis With Boundary Elements, 2018, 90, 1-16.	3.7	44

#	Article	IF	Citations
91	Magnetostrictive alloys: Promising materials for biomedical applications. Bioactive Materials, 2022, 8, 177-195.	15.6	44
92	Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering. Materials Characterization, 2014, 97, 47-56.	4.4	42
93	The microstructure, mechanical properties and degradation behavior of laser-melted Mg Sn alloys. Journal of Alloys and Compounds, 2016, 687, 109-114.	5.5	42
94	Advances in the occurrence and biotherapy of osteoporosis. Biochemical Society Transactions, 2020, 48, 1623-1636.	3.4	42
95	Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Materials Science and Engineering C, 2013, 33, 3802-3810.	7. 3	41
96	Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions. Composites Part B: Engineering, 2019, 160, 225-240.	12.0	41
97	A co-dispersed nanosystem of strontium-anchored reduced graphene oxide to enhance the bioactivity and mechanical property of polymer scaffolds. Materials Chemistry Frontiers, 2021, 5, 2373-2386.	5.9	41
98	<i>In vitro</i> bioactivity and degradability of βâ€tricalcium phosphate porous scaffold fabricated via selective laser sintering. Biotechnology and Applied Biochemistry, 2013, 60, 266-273.	3.1	39
99	Mechanical properties' improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering. Biofabrication, 2013, 5, 025005.	7.1	39
100	A three-dimensional solution for free vibration of FGP-GPLRC cylindrical shells resting on elastic foundations: a comparative and parametric study. International Journal of Mechanical Sciences, 2020, 187, 105896.	6.7	38
101	Microstructure Evolution and Biodegradation Behavior of Laser Rapid Solidified Mg–Al–Zn Alloy. Metals, 2017, 7, 105.	2.3	37
102	Rare Earth Element Yttrium Modified Mg-Al-Zn Alloy: Microstructure, Degradation Properties and Hardness. Materials, 2017, 10, 477.	2.9	37
103	Dispersion strategies for low-dimensional nanomaterials and their application in biopolymer implants. Materials Today Nano, 2021, 15, 100127.	4.6	37
104	Toughening and strengthening mechanisms of porous akermanite scaffolds reinforced with nano-titania. RSC Advances, 2015, 5, 3498-3507.	3.6	36
105	Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting. Materials, 2017, 10, 307.	2.9	36
106	In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing. Journal of Magnesium and Alloys, 2023, 11, 629-640.	11.9	36
107	Processing and characterization of laser sintered hydroxyapatite scaffold for tissue engineering. Biotechnology and Bioprocess Engineering, 2013, 18, 520-527.	2.6	35
108	Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering. RSC Advances, 2014, 4, 12782-12788.	3.6	35

#	Article	IF	Citations
109	Cancer stem-like cell: a novel target for nasopharyngeal carcinoma therapy. Stem Cell Research and Therapy, 2014, 5, 44.	5.5	35
110	Rationally designed 2D/2D SiC/g-C ₃ N ₄ photocatalysts for hydrogen production. Catalysis Science and Technology, 2019, 9, 3896-3906.	4.1	35
111	Mechanically driving supersaturated Fe–Mg solid solution for bone implant: Preparation, solubility and degradation. Composites Part B: Engineering, 2021, 207, 108564.	12.0	35
112	Transcrystalline growth of PLLA on carbon fiber grafted with nano-SiO2 towards boosting interfacial bonding in bone scaffold. Biomaterials Research, 2022, 26, 2.	6.9	35
113	In Situ Growth of a Metal–Organic Framework on Graphene Oxide for the Chemo-Photothermal Therapy of Bacterial Infection in Bone Repair. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21996-22005.	8.0	35
114	Cellulose nanocrystals as biobased nucleation agents in poly-l-lactide scaffold: Crystallization behavior and mechanical properties. Polymer Testing, 2020, 85, 106458.	4.8	34
115	A semi-analytical method for transverse vibration of sector-like thin plate with simply supported radial edges. Applied Mathematical Modelling, 2018, 60, 48-63.	4.2	33
116	Dual-functional scaffolds of poly(L-lactic acid)/nanohydroxyapatite encapsulated with metformin: Simultaneous enhancement of bone repair and bone tumor inhibition. Materials Science and Engineering C, 2021, 120, 111592.	7.3	33
117	Silver-doped bioglass modified scaffolds: A sustained antibacterial efficacy. Materials Science and Engineering C, 2021, 129, 112425.	7.3	33
118	Pre-oxidation induced in situ interface strengthening in biodegradable Zn/nano-SiC composites prepared by selective laser melting. Journal of Advanced Research, 2022, 38, 143-155.	9.5	33
119	Characterization and Bioactivity Evaluation of (Polyetheretherketone/Polyglycolicacid)-Hydroyapatite Scaffolds for Tissue Regeneration. Materials, 2016, 9, 934.	2.9	32
120	Influence of hybrid extrusion and solution treatment on the microstructure and degradation behavior of Mg-0.1Cu alloy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 229, 105-117.	3.5	32
121	Graphene Oxide Induces Ester Bonds Hydrolysis of Poly-l-lactic Acid Scaffold to Accelerate Degradation. International Journal of Bioprinting, 2019, 6, 249.	3.4	32
122	MiR-29c regulates the expression of miR-34c and miR-449a by targeting DNA methyltransferase 3a and 3b in nasopharyngeal carcinoma. BMC Cancer, 2016, 16, 218.	2.6	31
123	A Novel Brucine Gel Transdermal Delivery System Designed for Anti-Inflammatory and Analgesic Activities. International Journal of Molecular Sciences, 2017, 18, 757.	4.1	31
124	MnO2 catalysis of oxygen reduction to accelerate the degradation of Fe-C composites for biomedical applications. Corrosion Science, 2020, 170, 108679.	6.6	31
125	Cu ions and cetyltrimethylammonium bromide loaded into montmorillonite: a synergistic antibacterial system for bone scaffolds. Materials Chemistry Frontiers, 2021, 6, 103-116.	5.9	31
126	Biodegradation mechanisms of selective laser-melted Mg– <i>x</i> Al–Zn alloy: grain size and intermetallic phase. Virtual and Physical Prototyping, 2018, 13, 59-69.	10.4	30

#	Article	IF	Citations
127	Interfacial reinforcement in a poly-l-lactic acid/mesoporous bioactive glass scaffold via polydopamine. Colloids and Surfaces B: Biointerfaces, 2018, 170, 45-53.	5.0	30
128	Insight into enhanced visible-light photocatalytic activity of SWCNTs/g-C3N4 nanocomposites from first principles. Applied Surface Science, 2020, 530, 147181.	6.1	30
129	A peritectic phase refines the microstructure and enhances Zn implants. Journal of Materials Research and Technology, 2020, 9, 2623-2634.	5.8	30
130	Physical stimulations and their osteogenesis-inducing mechanisms. International Journal of Bioprinting, 2018, 4, 138.	3.4	30
131	Water-responsive shape memory thermoplastic polyurethane scaffolds triggered at body temperature for bone defect repair. Materials Chemistry Frontiers, 2022, 6, 1456-1469.	5.9	30
132	Nano SiO2 and MgO Improve the Properties of Porous \hat{l}^2 -TCP Scaffolds via Advanced Manufacturing Technology. International Journal of Molecular Sciences, 2015, 16, 6818-6830.	4.1	29
133	Antibacterial Capability, Physicochemical Properties, and Biocompatibility of nTiO2 Incorporated Polymeric Scaffolds. Polymers, 2018, 10, 328.	4.5	29
134	<i>Akkermansia muciniphila</i> promotes type H vessels formation and bone fracture healing by reducing gut permeability and inflammation. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	29
135	Corrosion and antibacterial performance of novel selective-laser-melted (SLMed) Ti-xCu biomedical alloys. Journal of Alloys and Compounds, 2021, 864, 158415.	5.5	29
136	Focal Adhesion Kinase Knockdown in Carcinomaâ€Associated Fibroblasts Inhibits Oral Squamous Cell Carcinoma Metastasis via Downregulating MCPâ€1/CCL2 Expression. Journal of Biochemical and Molecular Toxicology, 2015, 29, 70-76.	3.0	28
137	Akermanite scaffolds reinforced with boron nitride nanosheets in bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2015, 26, 188.	3.6	28
138	Calcium Silicate Improved Bioactivity and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Scaffolds. Polymers, 2017, 9, 175.	4.5	28
139	Effects of creep-aging parameters on aging precipitates of a two-stage creep-aged Al–Zn–Mg–Cu alloy under the extra compressive stress. Journal of Alloys and Compounds, 2018, 743, 448-455.	5.5	28
140	Wave based method (WBM) for free vibration analysis of cross-ply composite laminated cylindrical shells with arbitrary boundaries. Composite Structures, 2019, 213, 284-298.	5.8	28
141	Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30-xGO composites prepared by selective laser melting. Journal of Magnesium and Alloys, 2020, 8, 952-962.	11.9	28
142	A co-dispersion nanosystem of graphene oxide @silicon-doped hydroxyapatite to improve scaffold properties. Materials and Design, 2021, 199, 109399.	7.0	28
143	Dilemma and breakthrough of biodegradable poly-l-lactic acid in bone tissue repair. Journal of Materials Research and Technology, 2022, 17, 2369-2387.	5.8	28
144	Silver-decorated black phosphorus: a synergistic antibacterial strategy. Nanotechnology, 2022, 33, 245708.	2.6	28

#	Article	IF	Citations
145	Magnetic-driven wireless electrical stimulation in a scaffold. Composites Part B: Engineering, 2022, 237, 109864.	12.0	28
146	Magnetostrictive bulk Fe-Ga alloys prepared by selective laser melting for biodegradable implant applications. Materials and Design, 2022, 220, 110861.	7.0	28
147	Correlation between properties and microstructure of laser sintered porous $\langle i \rangle \hat{l}^2 \langle i \rangle$ -tricalcium phosphate bone scaffolds. Science and Technology of Advanced Materials, 2013, 14, 055002.	6.1	27
148	Polyetheretherketone/poly (glycolic acid) blend scaffolds with biodegradable properties. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1434-1446.	3.5	27
149	A general vibration analysis of functionally graded porous structure elements of revolution with general elastic restraints. Composite Structures, 2019, 209, 277-299.	5.8	27
150	Amorphous magnesium alloy with high corrosion resistance fabricated by laser powder bed fusion. Journal of Alloys and Compounds, 2022, 897, 163247.	5.5	27
151	Spectral element modeling and experimental investigations on vibration behaviors of imperfect plate considering irregular hole and curved crack. Journal of Sound and Vibration, 2022, 529, 116924.	3.9	27
152	Nitrogen-doped carbon-ZnO heterojunction derived from ZIF-8: a photocatalytic antibacterial strategy for scaffold. Materials Today Nano, 2022, 18, 100210.	4.6	27
153	Downregulation of Micrornaâ€148a in Cancerâ€Associated Fibroblasts from Oral Cancer Promotes Cancer Cell Migration and Invasion by Targeting Wnt10b. Journal of Biochemical and Molecular Toxicology, 2016, 30, 186-191.	3.0	26
154	HMG-box transcription factor 1: a positive regulator of the G1/S transition through the Cyclin-CDK-CDKI molecular network in nasopharyngeal carcinoma. Cell Death and Disease, 2018, 9, 100.	6.3	26
155	Biodegradation Behavior of Coated As-Extruded Mg–Sr Alloy in Simulated Body Fluid. Acta Metallurgica Sinica (English Letters), 2019, 32, 1195-1206.	2.9	26
156	Graphene-assisted barium titanate improves piezoelectric performance of biopolymer scaffold. Materials Science and Engineering C, 2020, 116, 111195.	7.3	26
157	Sr ²⁺ Sustained Release System Augments Bioactivity of Polymer Scaffold. ACS Applied Polymer Materials, 2022, 4, 2691-2702.	4.4	26
158	Nanoâ€Hydroxyapatite Improves the Properties of βâ€ŧricalcium Phosphate Bone Scaffolds. International Journal of Applied Ceramic Technology, 2013, 10, 1003-1013.	2.1	25
159	Effect of Nanoâ€Zirconia on the Mechanical and Biological Properties of Calcium Silicate Scaffolds. International Journal of Applied Ceramic Technology, 2015, 12, 1148-1156.	2.1	25
160	A space network structure constructed by tetraneedlelike ZnO whiskers supporting boron nitride nanosheets to enhance comprehensive properties of poly(L-lacti acid) scaffolds. Scientific Reports, 2016, 6, 33385.	3.3	25
161	Mechanical and structural characterization of diopside scaffolds reinforced with graphene. Journal of Alloys and Compounds, 2016, 655, 86-92.	5 . 5	25
162	Nd-induced honeycomb structure of intermetallic phase enhances the corrosion resistance of Mg alloys for bone implants. Journal of Materials Science: Materials in Medicine, 2017, 28, 130.	3.6	25

#	Article	IF	Citations
163	Investigation on dynamic performances of a set of composite laminated plate system under the influences of boundary and coupling conditions. Mechanical Systems and Signal Processing, 2019, 132, 721-747.	8.0	25
164	Construction of a stereocomplex between poly(<scp>d</scp> -lactide) grafted hydroxyapatite and poly(<scp>l</scp> -lactide): toward a bioactive composite scaffold with enhanced interfacial bonding. Journal of Materials Chemistry B, 2022, 10, 214-223.	5 . 8	25
165	Hydroxyapatite nanoparticles in situ grown on carbon nanotube as a reinforcement for poly (Îμ-caprolactone) bone scaffold. Materials Today Advances, 2022, 15, 100272.	5.2	25
166	A Novel MgO-CaO-SiO2 System for Fabricating Bone Scaffolds with Improved Overall Performance. Materials, 2016, 9, 287.	2.9	24
167	Disperse magnetic sources constructed with functionalized Fe3O4 nanoparticles in polylactic acid scaffolds. Polymer Testing, 2019, 76, 33-42.	4.8	24
168	Preparation of complex porous scaffolds via selective laser sintering of poly(vinyl alcohol)/calcium silicate. Journal of Bioactive and Compatible Polymers, 2014, 29, 110-120.	2.1	23
169	Biosilicate scaffolds for bone regeneration: influence of introducing SrO. RSC Advances, 2017, 7, 21749-21757.	3.6	23
170	Enhanced Crystallinity and Antibacterial of PHBV Scaffolds Incorporated with Zinc Oxide. Journal of Nanomaterials, 2020, 2020, 1-12.	2.7	23
171	Polydopamine modified polycaprolactone powder for fabrication bone scaffold owing intrinsic bioactivity. Journal of Materials Research and Technology, 2021, 15, 3375-3385.	5. 8	23
172	A conductive network enhances nerve cell response. Additive Manufacturing, 2022, 52, 102694.	3.0	23
173	The microstructure evolution of nanohydroxapatite powder sintered for bone tissue engineering. Journal of Experimental Nanoscience, 2013, 8, 762-773.	2.4	22
174	The interaction of Lin28A/Rho associated coiled-coil containing protein kinase2 accelerates the malignancy of ovarian cancer. Oncogene, 2019, 38, 1381-1397.	5 . 9	22
175	Surface-Modified Graphene Oxide with Compatible Interface Enhances Poly-L-Lactic Acid Bone Scaffold. Journal of Nanomaterials, 2020, 2020, 1-11.	2.7	22
176	<i>In situ</i> grown rare earth lanthanum on carbon nanofibre for interfacial reinforcement in Zn implants. Virtual and Physical Prototyping, 2022, 17, 700-717.	10.4	22
177	Mechanism of polyâ€∢scp>l∢/scp>â€lysineâ€modified iron oxide nanoparticles uptake into cells. Journal of Biomedical Materials Research - Part A, 2013, 101, 2846-2850.	4.0	21
178	Bioactivity Improvement of Forsterite-Based Scaffolds with nano-58S Bioactive Glass. Materials and Manufacturing Processes, 2014, 29, 877-884.	4.7	21
179	Microstructure Evolution and Mechanical Properties Improvement in Liquid-Phase-Sintered Hydroxyapatite by Laser Sintering. Materials, 2015, 8, 1162-1175.	2.9	21
180	2D layered SiC/C2N van der Waals type-II heterostructure: a visible-light-driven photocatalyst for water splitting. New Journal of Chemistry, 2020, 44, 15439-15445.	2.8	21

#	Article	IF	Citations
181	Layer-dependent photocatalysts of GaN/SiC-based multilayer van der Waals heterojunctions for hydrogen evolution. Catalysis Science and Technology, 2021, 11, 3059-3069.	4.1	21
182	In-situ growth of silica nano-protrusions on halloysite nanotubes for interfacial reinforcement in polymer/halloysite scaffolds. Applied Surface Science, 2020, 513, 145772.	6.1	20
183	Towards a comprehensive understanding of distortion in additive manufacturing based on assumption of constraining force. Virtual and Physical Prototyping, 2021, 16, S85-S97.	10.4	20
184	An nMgO containing scaffold: Antibacterial activity, degradation properties and cell responses. International Journal of Bioprinting, 2018, 4, 120.	3.4	20
185	Functionalization of Calcium Sulfate/Bioglass Scaffolds with Zinc Oxide Whisker. Molecules, 2016, 21, 378.	3.8	19
186	Preparation and characterization of laser-melted Mg–Sn–Zn alloys for biomedical application. Journal of Materials Science: Materials in Medicine, 2017, 28, 13.	3.6	19
187	A mesoporous silica composite scaffold: Cell behaviors, biomineralization and mechanical properties. Applied Surface Science, 2017, 423, 314-321.	6.1	19
188	A multi-scale porous scaffold fabricated by a combined additive manufacturing and chemical etching process. International Journal of Bioprinting, 2018, 4, .	3.4	19
189	Inhibition of phase transformation from \hat{l}^2 - to \hat{l} ±-tricalcium phosphate with addition of poly (L-lactic) Tj ETQq 1 1	0.784314	rgBT /Overlo
190	Diopside modified porous polyglycolide scaffolds with improved properties. RSC Advances, 2015, 5, 54822-54829.	3.6	18
191	Boron Nitride Nanotubes Reinforce Tricalcium Phosphate Scaffolds and Promote the Osteogenic Differentiation of Mesenchymal Stem Cells. Journal of Biomedical Nanotechnology, 2016, 12, 934-947.	1.1	18
192	Silane Modified Diopside for Improved Interfacial Adhesion and Bioactivity of Composite Scaffolds. Molecules, 2017, 22, 511.	3.8	18
193	Strong corrosion induced by carbon nanotubes to accelerate Fe biodegradation. Materials Science and Engineering C, 2019, 104, 109935.	7.3	18
194	Semicoherent strengthens graphene/zinc scaffolds. Materials Today Nano, 2022, 17, 100163.	4.6	18
195	Simulation of dynamic temperature field during selective laser sintering of ceramic powder. Mathematical and Computer Modelling of Dynamical Systems, 2013, 19, 1-11.	2.2	17
196	Mechanical Reinforcement of Diopside Bone Scaffolds with Carbon Nanotubes. International Journal of Molecular Sciences, 2014, 15, 19319-19329.	4.1	17
197	Microstructure, mechanical properties and in vitro bioactivity of akermanite scaffolds fabricated by laser sintering. Bio-Medical Materials and Engineering, 2014, 24, 2073-2080.	0.6	17
198	Mechanisms of tetraneedlelike ZnO whiskers reinforced forsterite/bioglass scaffolds. Journal of Alloys and Compounds, 2015, 636, 341-347.	5 . 5	17

#	Article	IF	Citations
199	An acoustic modeling of the three-dimensional annular segment cavity with various impedance boundary conditions. Results in Physics, 2018, 10, 411-423.	4.1	17
200	Wrapping effect of secondary phases on the grains: increased corrosion resistance of Mg–Al alloys. Virtual and Physical Prototyping, 2018, 13, 292-300.	10.4	17
201	Graphene Oxide Reinforced Iron Matrix Composite With Enhanced Biodegradation Rate Prepared by Selective Laser Melting. Advanced Engineering Materials, 2019, 21, 1900314.	3.5	17
202	FABRICATION AND CHARACTERIZATION OF CALCIUM SILICATE SCAFFOLDS FOR TISSUE ENGINEERING. Journal of Mechanics in Medicine and Biology, 2014, 14, 1450049.	0.7	16
203	Selective laser sintering of \hat{l}^2 -TCP/nano-58S composite scaffolds with improved mechanical properties. Materials and Design, 2015, 84, 395-401.	7.0	16
204	Ag-Introduced Antibacterial Ability and Corrosion Resistance for Bio-Mg Alloys. BioMed Research International, 2018, 2018, 1-13.	1.9	16
205	Advances in biocermets for bone implant applications. Bio-Design and Manufacturing, 2020, 3, 307-330.	7.7	16
206	A self-assembled montmorillonite-carbon nanotube hybrid nanoreinforcement for poly-l-lactic acid bone scaffold. Materials Today Advances, 2021, 11, 100158.	5.2	16
207	Liquid Phase Sintered Ceramic Bone Scaffolds by Combined Laser and Furnace. International Journal of Molecular Sciences, 2014, 15, 14574-14590.	4.1	15
208	A bioactive glass nanocomposite scaffold toughed by multi-wall carbon nanotubes for tissue engineering. Journal of the Ceramic Society of Japan, 2015, 123, 485-491.	1.1	15
209	Calcium sulfate bone scaffolds with controllable porous structure by selective laser sintering. Journal of Porous Materials, 2015, 22, 1171-1178.	2.6	15
210	Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 97-109.	3.5	15
211	An exact solution for free vibration of cross-ply laminated composite cylindrical shells with elastic restraint ends. Computers and Mathematics With Applications, 2019, 77, 641-661.	2.7	15
212	Organically modified montmorillonite improves interfacial compatibility between PLLA and PGA in bone scaffold. Polymer Degradation and Stability, 2020, 182, 109394.	5.8	15
213	In Vitro Corrosion Resistance and Antibacterial Performance of Novel Fe– <i>×</i> Cu Biomedical Alloys Prepared by Selective Laser Melting. Advanced Engineering Materials, 2021, 23, 2001000.	3.5	15
214	Comparison of the biodegradation of ZK30 subjected to solid solution treating and selective laser melting. Journal of Materials Research and Technology, 2021, 10, 722-729.	5.8	15
215	A continuous net-like eutectic structure enhances the corrosion resistance of Mg alloys. International Journal of Bioprinting, 2019, 5, 207.	3.4	15
216	Polyaniline Protrusions on MoS ₂ Nanosheets for PVDF Scaffolds with Improved Electrical Stimulation. ACS Applied Nano Materials, 2021, 4, 13955-13966.	5.0	15

#	Article	IF	CITATIONS
217	Enhanced Stability of Calcium Sulfate Scaffolds with 45S5 Bioglass for Bone Repair. Materials, 2015, 8, 7498-7510.	2.9	14
218	Mechanical reinforcement of bioceramics scaffolds via fracture energy dissipation induced by sliding action of MoS2 nanoplatelets. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 423-433.	3.1	14
219	Lanthanum-Containing Magnesium Alloy with Antitumor Function Based on Increased Reactive Oxygen Species. Applied Sciences (Switzerland), 2018, 8, 2109.	2.5	14
220	Fabricating the nanostructured surfaces of CaSiO3 scaffolds. Applied Surface Science, 2018, 455, 1150-1160.	6.1	14
221	Study on Fe-xGO Composites Prepared by Selective Laser Melting: Microstructure, Hardness, Biodegradation and Cytocompatibility. Jom, 2020, 72, 1163-1174.	1.9	14
222	Construction of Fe ₃ O ₄ -Loaded Mesoporous Carbon Systems for Controlled Drug Delivery. ACS Applied Bio Materials, 2021, 4, 5304-5311.	4.6	14
223	Influence of Alloying Treatment and Rapid Solidification on the Degradation Behavior and Mechanical Properties of Mg. Metals, 2016, 6, 259.	2.3	13
224	Pasteurized autograft reconstruction after resection of periacetabular malignant bone tumours. World Journal of Surgical Oncology, 2017, 15, 13.	1.9	13
225	miR-18a reactivates the Epstein-Barr virus through defective DNA damage response and promotes genomic instability in EBV-associated lymphomas. BMC Cancer, 2018, 18, 1293.	2.6	13
226	Bioceramic enhances the degradation and bioactivity of iron bone implant. Materials Research Express, 2019, 6, 115401.	1.6	13
227	Forming quality, mechanical properties, and anti-inflammatory activity of additive manufactured Zn-Nd alloy. Journal of Zhejiang University: Science A, 2020, 21, 876-891.	2.4	13
228	Mechanism for corrosion protection of \hat{l}^2 -TCP reinforced ZK60 via laser rapid solidification. International Journal of Bioprinting, 2018, 4, 124.	3.4	13
229	Drug loading/release and bioactivity research of a mesoporous bioactive glass/polymer scaffold. Ceramics International, 2019, 45, 18003-18013.	4.8	12
230	Differentiation of primordial germ cells from premature ovarian insufficiency-derived induced pluripotent stem cells. Stem Cell Research and Therapy, 2019, 10, 156.	5.5	12
231	Crystallinity and Reinforcement in Poly-L-Lactic Acid Scaffold Induced by Carbon Nanotubes. Advances in Polymer Technology, 2019, 2019, 1-10.	1.7	12
232	[C ₇ H ₁₄ NO][ClO ₄]: order–disorder structural change induced sudden switchable dielectric behaviour at room temperature. CrystEngComm, 2018, 20, 7058-7061.	2.6	11
233	Construction of an electric microenvironment in piezoelectric scaffolds fabricated by selective laser sintering. Ceramics International, 2019, 45, 20234-20242.	4.8	11
234	Montmorillonite with unique interlayer space imparted polymer scaffolds with sustained release of Ag+. Ceramics International, 2019, 45, 11517-11526.	4.8	11

#	Article	IF	Citations
235	A polymer scaffold with drug-sustained release and antibacterial activity. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 398-405.	3.4	11
236	CircRNAs and LncRNAs in Osteoporosis. Differentiation, 2020, 116, 16-25.	1.9	11
237	Lin28A Regulates Stem-like Properties of Ovarian Cancer Cells by Enriching RAN and HSBP1 mRNA and Up-regulating its Protein Expression. International Journal of Biological Sciences, 2020, 16, 1941-1953.	6.4	11
238	Rod-like Eutectic Structure in Biodegradable Zn–Al–Sn Alloy Exhibiting Enhanced Mechanical Strength. ACS Biomaterials Science and Engineering, 2020, 6, 3821-3831.	5.2	11
239	Rivet-Inspired Modification of Carbon Nanotubes by In Situ-Reduced Ag Nanoparticles To Enhance the Strength and Ductility of Zn Implants. ACS Biomaterials Science and Engineering, 2021, 7, 5484-5496.	5.2	11
240	Nanodiamond reinforced polyvinylidene fluoride/bioglass scaffolds for bone tissue engineering. Journal of Porous Materials, 2017, 24, 249-255.	2.6	10
241	Montmorillonite reduces crystallinity of poly″″actic acid scaffolds to accelerate degradation. Polymers for Advanced Technologies, 2019, 30, 2425-2435.	3.2	10
242	Effect of interatomic potentials on modeling the nanostructure of amorphous carbon by liquid quenching method. Computational Materials Science, 2020, 184, 109939.	3.0	10
243	Fabrication and Characterization of Porous 45S5 Glass Scaffolds via Direct Selective Laser Sintering. Materials and Manufacturing Processes, 0, , 130219154812009.	4.7	9
244	Island-to-acicular alteration of second phase enhances the degradation resistance of biomedical AZ61 alloy. Journal of Alloys and Compounds, 2020, 835, 155397.	5.5	9
245	An improved shooting algorithm and its application to high-power fiber lasers. Optics Communications, 2010, 283, 3764-3767.	2.1	8
246	Preparation of micro/nanometer-sized porous surface structure of calcium phosphate scaffolds and the influence on biocompatibility. Journal of Materials Research, 2014, 29, 1144-1152.	2.6	8
247	Vibration characteristics of functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports. Curved and Layered Structures, 2018, 5, 10-34.	1.3	8
248	Co-enhance bioactive of polymer scaffold with mesoporous silica and nano-hydroxyapatite. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1097-1113.	3. 5	8
249	Study on Failure Process of Silicon-Doped Amorphous Carbon by ReaxFF Molecular Dynamics Simulation for HAMR. IEEE Transactions on Magnetics, 2020, 56, 1-6.	2.1	8
250	Preparation of Graphene Oxide-loaded Nickel with Excellent Antibacterial Property by Magnetic Field-Assisted Scanning Jet Electrodeposition. International Journal of Bioprinting, 2021, 8, 432.	3.4	8
251	Polydopamine constructed interfacial molecular bridge in nano-hydroxylapatite/polycaprolactone composite scaffold. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112668.	5.0	8
252	Poly (I-lactide acid) improves complete nano-hydroxyapatite bone scaffolds through the microstructure rearrangement. Electronic Journal of Biotechnology, 2012, 15, .	2.2	7

#	Article	IF	CITATIONS
253	Grain Growth Associates Mechanical Properties in Nano-Hydroxyapatite Bone Scaffolds. Journal of Nanoscience and Nanotechnology, 2013, 13, 5340-5345.	0.9	7
254	Improvement in degradability of 58s glass scaffolds by ZnO and \hat{l}^2 -TCP modification. Bioengineered, 2016, 7, 342-351.	3.2	7
255	Sequential Phase Transitions with Switchable Dielectric Constant in a Metalâ€Free Ionic Crystal. European Journal of Inorganic Chemistry, 2019, 2019, 2443-2447.	2.0	7
256	Hybridization of graphene oxide and mesoporous bioactive glass: Micro-space network structure enhance polymer scaffold. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 109, 103827.	3.1	7
257	Copper-doped mesoporous bioactive glass endows magnesium-based scaffold with antibacterial activity and corrosion resistance. Materials Chemistry Frontiers, 2021, 5, 7228-7240.	5.9	7
258	Laser-Sintered Mg-Zn Supersaturated Solid Solution with High Corrosion Resistance. Micromachines, 2021, 12, 1368.	2.9	7
259	Peritectic-eutectic transformation of intermetallic in Zn alloy: Effects of Mn on the microstructure, strength and ductility. Materials Characterization, 2022, 190, 112054.	4.4	7
260	Application of computer-aided engineering optimum design method in aluminum profile extrusion mould. Central South University, 2003, 10, 64-68.	0.5	6
261	Microstructure analysis in the coupling region of fiber coupler with a novel electrical micro-heater. Optical Fiber Technology, 2011, 17, 541-545.	2.7	6
262	Tunable Degradation Rate and Favorable Bioactivity of Porous Calcium Sulfate Scaffolds by Introducing Nano-Hydroxyapatite. Applied Sciences (Switzerland), 2016, 6, 411.	2.5	6
263	Iron Oxide Nanoparticles Synergize with Erlotinib to Suppress Refractory Non-Small Cell Lung Cancer Cell Proliferation Through the Inhibition of ErbB/PI3K/AKT and PTEN Activation. Journal of Biomedical Nanotechnology, 2017, 13, 458-468.	1.1	6
264	High-performance spin rectification in gallium nitride-based molecular junctions with asymmetric edge passivation. Journal of Applied Physics, 2018, 124, .	2.5	6
265	In-situ grown Ag on magnetic halloysite nanotubes in scaffolds: Antibacterial, biocompatibility and mechanical properties. Ceramics International, 2021, 47, 32756-32765.	4.8	6
266	Emerging role of m6A modification in osteogenesis of stem cells. Journal of Bone and Mineral Metabolism, 2022, 40, 177-188.	2.7	6
267	A domain decomposition method for elastodynamic problems of functionally graded elliptic shells and panels with elastic constraints. Thin-Walled Structures, 2019, 142, 262-276.	5.3	5
268	Refined Lamellar Eutectic in Biomedical Zn–Al–Zr Alloys for Mechanical Reinforcement. Advanced Engineering Materials, 2019, 21, 1801322.	3.5	5
269	Effect of Alloying Mn by Selective Laser Melting on the Microstructure and Biodegradation Properties of Pure Mg. Metals, 2020, 10, 1527.	2.3	5
270	Polydopamine-decorated black phosphorous to enhance stability in polymer scaffold. Nanotechnology, 2021, 32, 455701.	2.6	5

#	Article	IF	CITATIONS
271	A dual redox system for enhancing the biodegradability of Fe-C-Cu composite scaffold. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112431.	5.0	5
272	The relationship between IR characteristic peak and microstructure of the glass used as optical fiber. Central South University, 2006, 13, 238-241.	0.5	4
273	Effect of technological parameters on optical performance of fiber coupler. Central South University, 2007, 14, 370-373.	0.5	4
274	Performance improvement of optical fiber coupler with electric heating versus gas heating. Applied Optics, 2010, 49, 4514.	2.1	4
275	Systemic optimization of linear cavity Yb-doped double-clad fiber laser. Optik, 2013, 124, 793-797.	2.9	4
276	DEVELOPMENT OF COMPLEX POROUS POLYVINYL ALCOHOL SCAFFOLDS: MICROSTRUCTURE, MECHANICAL, AND BIOLOGICAL EVALUATIONS. Journal of Mechanics in Medicine and Biology, 2013, 13, 1350034.	0.7	4
277	Silicon carbide whiskers reinforced akermanite scaffolds for tissue engineering. RSC Advances, 2014, 4, 36868.	3.6	4
278	Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds. BioMed Research International, 2016, 2016, 1-8.	1.9	4
279	MgO whiskers reinforced poly(vinylidene fluoride) scaffolds. RSC Advances, 2016, 6, 108196-108202.	3.6	4
280	Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels with general elastic supports. Curved and Layered Structures, 2018, 5, 95-115.	1.3	4
281	In situ decomposition of Ti ₂ AlN promoted interfacial bonding in ZnAl-Ti ₂ AlN biocomposites for bone repair. Materials Research Express, 2020, 7, 025402.	1.6	4
282	Accelerated degradation of poly(l-lactide) bone scaffold: Crystallinity and hydrophilicity. Materials Chemistry and Physics, 2021, 266, 124545.	4.0	4
283	A Continuous MgF 2 Network Structure Encapsulated Mg Alloy Prepared by Selective Laser Melting for Enhanced Biodegradation Resistance. Advanced Engineering Materials, 2021, 23, 2100389.	3.5	4
284	Vibro-acoustic analysis of a circumferentially coupled composite laminated annular plate backed by double cylindrical acoustic cavities. Ocean Engineering, 2022, 257, 111584.	4.3	4
285	Novel manufacturing method of optical fiber coupler. Central South University, 2006, 13, 242-245.	0.5	3
286	Relationship between rheological manufacturing process and optical performance of optical fiber coupler. Central South University, 2006, 13, 175-179.	0.5	3
287	The optimum length of linear cavity Yb3+-doped double-clad fiber laser. Optics Communications, 2010, 283, 1449-1453.	2.1	3
288	Microstructure, Mechanical, and Biological Properties of Porous Poly(vinylidene fluoride) Scaffolds Fabricated by Selective Laser Sintering. International Journal of Polymer Science, 2015, 2015, 1-9.	2.7	3

#	Article	IF	Citations
289	Development of bioceramic bone scaffolds by introducing triple liquid phases. Journal of Materials Research, 2016, 31, 3498-3505.	2.6	3
290	Tumor suppressor NGX6 inhibits the growth and metastasis of multiple cancers. Tumor Biology, 2016, 37, 5751-5760.	1.8	3
291	Mechanically Strong CaSiO3 Scaffolds Incorporating B2O3-ZnO Liquid Phase. Applied Sciences (Switzerland), 2017, 7, 387.	2.5	3
292	Uniform degradation mode and enhanced degradation resistance of Mg alloy via a long period stacking ordered phase in the grain interior. Materials Research Express, 2019, 6, 065406.	1.6	3
293	Mnâ€promoting formation of a longâ€period stackingâ€ordered phase in laserâ€melted Mg alloys to enhance degradation resistance. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 553-563.	1.5	3
294	Prediction of acoustic radiation from elliptical caps of revolution by using a semi-analytic method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	1.6	3
295	Covalent modified graphene oxide in biopolymer scaffold: dispersion and interfacial bonding. Surfaces and Interfaces, 2021, 25, 101254.	3.0	3
296	Galvanic corrosion induced by heterogeneous bimodal grain structures in Fe-Mn implant. Materials Characterization, 2021, 180, 111445.	4.4	3
297	A 45S5 Bioactive Glass Scaffold Reinforced with ZnO and MgO. Journal of Biomaterials and Tissue Engineering, 2016, 6, 98-106.	0.1	3
298	Hydrolytic Expansion Induces Corrosion Propagation for Increased Fe Biodegradation. International Journal of Bioprinting, 2019, 6, 248.	3.4	3
299	Laser Additively Manufactured Iron-Based Biocomposite: Microstructure, Degradation, and In Vitro Cell Behavior. Frontiers in Bioengineering and Biotechnology, 2021, 9, 783821.	4.1	3
300	Fitting methods for relaxation modulus of viscoelastic materials. Central South University, 2007, 14, 248-250.	0.5	2
301	Experimental measurement and numerical analysis of fused taper shape for optical fiber coupler. Central South University, 2007, 14, 251-254.	0.5	2
302	FABRICATION OPTIMIZATION OF NANOHYDROXYAPATITE ARTIFICIAL BONE SCAFFOLDS. Nano, 2012, 07, 1250015.	1.0	2
303	Molecular Dynamic Simulation on Combustion Process of Silicon-Doped Amorphous Carbon Film for Heat-Assisted Magnetic Recording. , 2018, , .		2
304	Research on corrosion behavior and biocompatibility of a porous Mg–3%Zn/5%β-Ca ₃ (PO ₄) ₂ composite scaffold for bone tissue engineering. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001985706.	1.6	2
305	Mesoporous Carbon as Galvanic-Corrosion Activator Accelerates Fe Degradation. Applied Sciences (Switzerland), 2020, 10, 2487.	2.5	2
306	A multi-scale porous scaffold fabricated by a combined additive manufacturing and chemical etching process for bone tissue engineering. International Journal of Bioprinting, 2018, 4, 133.	3.4	2

#	Article	IF	CITATIONS
307	Magnesium–Magnetic Field Synergy Enhances Mouse Bone Marrow Mesenchymal Stem Cell Differentiation into Osteoblasts Via the MAGT1 Channel. Journal of Nanomaterials, 2022, 2022, 1-10.	2.7	2
308	Spiral-eutectic-reinforced Biodegradable Zn–Mg–Ag Alloy Prepared via Selective Laser Melting. , 2022, , 100022.		2
309	An Efficient Algorithm Based on Propagation Equations of Tm3+-Doped Double-Clad Fiber Laser. , 2012, ,		1
310	Analysis of 3D Printed Diopside Scaffolds Properties for Tissue Engineering. Medziagotyra, 2015, 21, .	0.2	1
311	Using Bispyrene Fluorescence Probe for Determining the Multiple States of Organogel. ChemistrySelect, 2018, 3, 5361-5363.	1.5	1
312	Fe-Zn supersaturated solid solution prepared by mechanical alloying and laser sintering to accelerate degradation. Journal of Central South University, 2021, 28, 1170-1182.	3.0	1
313	The Development of a Novel Fused Bi-Conical Taper Machine with an Electrical Resistance Micro-Heater. Advanced Science Letters, 2011, 4, 2032-2036.	0.2	1
314	Stress-Induced Dual-Phase Structure to Accelerate Degradation of the Fe Implant. ACS Biomaterials Science and Engineering, 2022, 8, 1841-1851.	5.2	1
315	Reversible Diels–Alder Addition to Fullerenes: A Study of Dimethylanthracene with H2@C60. Nanomaterials, 2022, 12, 1667.	4.1	1
316	Structure analysis of optical fiber coupler with infrared spectrometry. Central South University, 2004, 11, 328-331.	0.5	0
317	Study of Nano-grinding for GMR Magnetic Recording Head. , 2007, , .		0
318	Development of a Novel Double Liquid Phase for Sintering $\langle I \rangle \hat{I}^2 \langle I \rangle$ -Tricalcium Phosphate Scaffold. Journal of Biomaterials and Tissue Engineering, 2016, 6, 788-797.	0.1	0
319	A general acoustic energy-spectral method for axisymmetric cavity with arbitrary curvature edges. Wave Motion, 2022, , 102981.	2.0	O