Catalina Carrasco-Pozo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3367250/publications.pdf

Version: 2024-02-01

54 papers 2,545 citations

28 h-index 206112 48 g-index

55 all docs 55 docs citations

55 times ranked 4240 citing authors

#	Article	IF	CITATIONS
1	HBO1 is required for the maintenance of leukaemia stem cells. Nature, 2020, 577, 266-270.	27.8	105
2	Hemin Prevents Increased Glycolysis in Macrophages upon Activation: Protection by Microbiota-Derived Metabolites of Polyphenols. Antioxidants, 2020, 9, 1109.	5.1	8
3	Metabolic Roles of Androgen Receptor and Tip60 in Androgen-Dependent Prostate Cancer. International Journal of Molecular Sciences, 2020, 21, 6622.	4.1	9
4	The Microbiota-Derived Metabolite of Quercetin, 3,4-Dihydroxyphenylacetic Acid Prevents Malignant Transformation and Mitochondrial Dysfunction Induced by Hemin in Colon Cancer and Normal Colon Epithelia Cell Lines. Molecules, 2020, 25, 4138.	3.8	13
5	Open″abel longâ€ŧerm treatment of addâ€on triheptanoin in adults with drugâ€ŧesistant epilepsy. Epilepsia Open, 2020, 5, 230-239.	2.4	9
6	The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. International Journal of Molecular Sciences, 2019, 20, 3177.	4.1	361
7	The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen Receptor. International Journal of Molecular Sciences, 2019, 20, 5384.	4.1	15
8	Protective Effect of an Avocado Peel Polyphenolic Extract Rich in Proanthocyanidins on the Alterations of Colonic Homeostasis Induced by a High-Protein Diet. Journal of Agricultural and Food Chemistry, 2019, 67, 11616-11626.	5. 2	18
9	Effect of a proanthocyanidin-rich polyphenol extract from avocado on the production of amino acid-derived bacterial metabolites and the microbiota composition in rats fed a high-protein diet. Food and Function, 2019, 10, 4022-4035.	4.6	25
10	Quercetin and Epigallocatechin Gallate in the Prevention and Treatment of Obesity: From Molecular to Clinical Studies. Journal of Medicinal Food, 2019, 22, 753-770.	1.5	57
11	Antenatal melatonin modulates an enhanced antioxidant/pro-oxidant ratio in pulmonary hypertensive newborn sheep. Redox Biology, 2019, 22, 101128.	9.0	26
12	Dexmedetomidine Improves Cardiovascular and Ventilatory Outcomes in Critically Ill Patients: Basic and Clinical Approaches. Frontiers in Pharmacology, 2019, 10, 1641.	3. 5	36
13	Proanthocyanidin-containing polyphenol extracts from fruits prevent the inhibitory effect of hydrogen sulfide on human colonocyte oxygen consumption. Amino Acids, 2018, 50, 755-763.	2.7	18
14	Triheptanoin protects against status epilepticusâ€induced hippocampal mitochondrial dysfunctions, oxidative stress and neuronal degeneration. Journal of Neurochemistry, 2018, 144, 431-442.	3.9	23
15	Quercetin Prevents Diastolic Dysfunction Induced by a High-Cholesterol Diet: Role of Oxidative Stress and Bioenergetics in Hyperglycemic Rats. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-14.	4.0	48
16	Heptanoate is neuroprotective in vitro but triheptanoin post-treatment did not protect against middle cerebral artery occlusion in rats. Neuroscience Letters, 2018, 683, 207-214.	2.1	6
17	Mechanisms of Cardiovascular Protection Associated with Intermittent Hypobaric Hypoxia Exposure in a Rat Model: Role of Oxidative Stress. International Journal of Molecular Sciences, 2018, 19, 366.	4.1	24
18	Polyunsaturated fatty acid induces cardioprotection against ischemia-reperfusion through the inhibition of NF-kappaB and induction of Nrf2. Experimental Biology and Medicine, 2017, 242, 1104-1114.	2.4	30

#	Article	IF	Citations
19	Quercetin Oxidation Paradoxically Enhances its Antioxidant and Cytoprotective Properties. Journal of Agricultural and Food Chemistry, 2017, 65, 11002-11010.	5.2	48
20	Tridecanoin is anticonvulsant, antioxidant, and improves mitochondrial function. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2035-2048.	4.3	55
21	Sulforaphane Protects against High Cholesterol-Induced Mitochondrial Bioenergetics Impairments, Inflammation, and Oxidative Stress and Preserves Pancreatic $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Cells Function. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	4.0	32
22	Alterations in Cytosolic and Mitochondrial [U- ¹³ C]Glucose Metabolism in a Chronic Epilepsy Mouse Model. ENeuro, 2017, 4, ENEURO.0341-16.2017.	1.9	39
23	Deleterious Effect of <i>p</i> -Cresol on Human Colonic Epithelial Cells Prevented by Proanthocyanidin-Containing Polyphenol Extracts from Fruits and Proanthocyanidin Bacterial Metabolites. Journal of Agricultural and Food Chemistry, 2016, 64, 3574-3583.	5. 2	54
24	Impact of Dietary Lipids on Colonic Function and Microbiota: An Experimental Approach Involving Orlistat-Induced Fat Malabsorption in Human Volunteers. Clinical and Translational Gastroenterology, 2016, 7, e161.	2.5	64
25	The deleterious effect of cholesterol and protection by quercetin on mitochondrial bioenergetics of pancreatic β-cells, glycemic control and inflammation: In vitro and in vivo studies. Redox Biology, 2016, 9, 229-243.	9.0	76
26	Polyphenol extracts interfere with bacterial lipopolysaccharide in vitro and decrease postprandial endotoxemia in human volunteers. Journal of Functional Foods, 2016, 26, 406-417.	3.4	19
27	Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress. , 2016 , 158 , $1\text{-}23$.		52
28	Molecular mechanisms of gastrointestinal protection by quercetin against indomethacin-induced damage: role of NF-κB and Nrf2. Journal of Nutritional Biochemistry, 2016, 27, 289-298.	4.2	61
29	The Gastrointestinal Tract as a Key Target Organ for the Health-Promoting Effects of Dietary Proanthocyanidins. Frontiers in Nutrition, 2016, 3, 57.	3.7	70
30	Sulforaphane is anticonvulsant and improves mitochondrial function. Journal of Neurochemistry, 2015, 135, 932-942.	3.9	56
31	\hat{l} ©3 Supplementation and Intermittent Hypobaric Hypoxia Induce Cardioprotection Enhancing Antioxidant Mechanisms in Adult Rats. Marine Drugs, 2015, 13, 838-860.	4.6	21
32	3,4-dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, protects against pancreatic \hat{l}^2 -cells dysfunction induced by high cholesterol. Experimental Cell Research, 2015, 334, 270-282.	2.6	63
33	The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radical Biology and Medicine, 2015, 85, 219-227.	2.9	108
34	The intake of maqui (Aristotelia chilensis) berry extract normalizes H2O2 and IL-6 concentrations in exhaled breath condensate from healthy smokers - an explorative study. Nutrition Journal, 2015, 14, 27.	3.4	16
35	Probiotic Screening and Safety Evaluation of <i>Lactobacillus</i> Strains from Plants, Artisanal Goat Cheese, Human Stools, and Breast Milk. Journal of Medicinal Food, 2014, 17, 487-495.	1.5	26
36	Protection by Polyphenols Against Mitochondrial Damage and Cytotoxicity., 2014, , 731-746.		2

#	Article	IF	CITATIONS
37	Effect of the Synbiotic (<i>B. animalis </i> spp. <i>lactis </i> Bb12 + Oligofructose) in Obese Subjects. A Randomized, Double-Blind, Controlled Clinical Trial. Journal of Food and Nutrition Research (Newark, Del), 2014, 2, 491-498.	0.3	11
38	Polyphenols Protect the Epithelial Barrier Function of Caco-2 Cells Exposed to Indomethacin through the Modulation of Occludin and Zonula Occludens-1 Expression. Journal of Agricultural and Food Chemistry, 2013, 61, 5291-5297.	5.2	106
39	Stimulation of cytosolic and mitochondrial calcium mobilization by indomethacin in Caco-2 cells: Modulation by the polyphenols quercetin, resveratrol and rutin. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 2052-2061.	2.4	39
40	Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells. Chemico-Biological Interactions, 2012, 195, 199-205.	4.0	121
41	Apple Peel Polyphenols Protect against Gastrointestinal Mucosa Alterations Induced by Indomethacin in Rats. Journal of Agricultural and Food Chemistry, 2011, 59, 6459-6466.	5.2	48
42	Apple Peel Polyphenol Extract Protects against Indomethacin-Induced Damage in Caco-2 Cells by Preventing Mitochondrial Complex I Inhibition. Journal of Agricultural and Food Chemistry, 2011, 59, 11501-11508.	5.2	38
43	Superoxide-dependent reduction of free Fe3+ and release of Fe2+ from ferritin by the physiologically-occurring Cu(I)–glutathione complex. Bioorganic and Medicinal Chemistry, 2011, 19, 534-541.	3.0	24
44	Protection by apple peel polyphenols against indometacin-induced oxidative stress, mitochondrial damage and cytotoxicity in Caco-2 cells. Journal of Pharmacy and Pharmacology, 2010, 62, 943-950.	2.4	40
45	The Cu(I)–glutathione complex: factors affecting its formation and capacity to generate reactive oxygen species. Transition Metal Chemistry, 2010, 35, 321-329.	1.4	20
46	Protection by apple peel polyphenols against indometacin-induced oxidative stress, mitochondrial damage and cytotoxicity in Caco-2 cells. Journal of Pharmacy and Pharmacology, 2010, 62, 943-50.	2.4	7
47	New potent 5-nitroindazole derivatives as inhibitors of Trypanosoma cruzi growth: Synthesis, biological evaluation, and mechanism of action studies. Bioorganic and Medicinal Chemistry, 2009, 17, 8186-8196.	3.0	41
48	Cu(I)–Glutathione complex: A potential source of superoxide radicals generation. Bioorganic and Medicinal Chemistry, 2008, 16, 6568-6574.	3.0	95
49	Double edge redox-implications for the interaction between endogenous thiols and copper ions: In vitro studies. Bioorganic and Medicinal Chemistry, 2008, 16, 9795-9803.	3.0	27
50	SLOW AND FAST-REACTING ANTIOXIDANTS FROM BERRIES: THEIR EVALUATION THROUGH THE FRAP (FERRIC) T	j ETQq0 0	0 ggBT /Overl
51	In Vitro Interaction Between Homocysteine and Copper Ions: Potential Redox Implications. Experimental Biology and Medicine, 2006, 231, 1569-1575.	2.4	20
52	Antioxidant screening of medicinal herbal teas. Phytotherapy Research, 2006, 20, 462-467.	5.8	42
53	Boldine and its antioxidant or health-promoting properties. Chemico-Biological Interactions, 2006, 159, 1-17.	4.0	147
54	Reaction of 5-Aminosalicylic Acid with Peroxyl Radicals: Protection and Recovery by Ascorbic Acid and Amino Acids. Pharmaceutical Research, 2005, 22, 1642-1648.	3.5	18