
Carmen ConcellÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3367224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isothiourea atalyzed Enantioselective Carboxy Group Transfer. Angewandte Chemie - International Edition, 2009, 48, 8914-8918.	13.8	172
2	Structure-enantioselectivity effects in 3,4-dihydropyrimido[2,1-b]benzothiazole-based isothioureas as enantioselective acylation catalysts. Organic and Biomolecular Chemistry, 2011, 9, 559-570.	2.8	83
3	Nâ€Heterocyclic Carbeneâ€Mediated Enantioselective Addition of Phenols to Unsymmetrical Alkylarylketenes. Advanced Synthesis and Catalysis, 2009, 351, 3001-3009.	4.3	76
4	Stereospecific and highly stereoselective cyclopropanation reactions promoted by samarium. Chemical Society Reviews, 2010, 39, 4103.	38.1	73
5	Probing the Efficiency of N-Heterocyclic Carbene Promoted O- to C-Carboxyl Transfer of Oxazolyl Carbonates. Journal of Organic Chemistry, 2008, 73, 2784-2791.	3.2	65
6	Direct Aldol Reactions Catalyzed by a Heterogeneous Guanidinium Salt/Proline System under Solvent-Free Conditions. Organic Letters, 2011, 13, 3032-3035.	4.6	64
7	Switching Diastereoselectivity in Proline-Catalyzed Aldol Reactions. Journal of Organic Chemistry, 2012, 77, 10375-10381.	3.2	53
8	Catalytic enantioselective Steglich rearrangements using chiral N-heterocyclic carbenes. Tetrahedron: Asymmetry, 2011, 22, 797-811.	1.8	45
9	NHCâ€Mediated Chlorination of Unsymmetrical Ketenes: Catalysis and Asymmetry. European Journal of Organic Chemistry, 2010, 2010, 5863-5869.	2.4	43
10	Kowalski Ester Homologation. Application to the Synthesis of β-Amino Esters. Journal of Organic Chemistry, 2004, 69, 4849-4851.	3.2	41
11	Amidine catalysed O- to C-carboxyl transfer of heterocyclic carbonate derivatives. Organic and Biomolecular Chemistry, 2008, 6, 2900.	2.8	41
12	General Metal-Free Baeyer–Villiger-Type Synthesis of Vinyl Acetates. Organic Letters, 2013, 15, 2810-2813.	4.6	41
13	Highly enantioselective synthesis of α-azido-β-hydroxy methyl ketones catalyzed by a cooperative proline–guanidinium salt system. Chemical Communications, 2014, 50, 2598.	4.1	40
14	Efficient Nitro-Aldol Reaction Using Sml2:Â A New Route to Nitro Alcohols under Very Mild Conditions. Journal of Organic Chemistry, 2006, 71, 7919-7922.	3.2	35
15	Asymmetric conjugate reductions with samarium diiodide: asymmetric synthesis of (2S,3R)- and (2S,3S)-[2-2H,3-2H]-leucine-(S)-phenylalanine dipeptides and (2S,3R)-[2-2H,3-2H]-phenylalanine methyl ester. Organic and Biomolecular Chemistry, 2005, 3, 1435-1447.	2.8	34
16	Efficient Addition Reaction of Bromonitromethane to Aldehydes Catalyzed by Nal:  A New Route to 1-Bromo-1-nitroalkan-2-ols under Very Mild Conditions. Organic Letters, 2006, 8, 5979-5982.	4.6	31
17	<scp>l</scp> -lsoleucine in a Choline Chloride/Ethylene Glycol Deep Eutectic Solvent: A Reusable Reaction Kit for the Asymmetric Cross-Aldol Carboligation. Organic Letters, 2016, 18, 4266-4269.	4.6	31
18	Aldol-type Reactions of Unmasked Iodoacetic Acid with Carbonyl Compounds Promoted by Samarium Diiodide:  Efficient Synthesis of Carboxylic 3-Hydroxyacids and Their Derivatives. Journal of Organic Chemistry, 2006, 71, 4428-4432.	3.2	29

CARMEN CONCELLÃ³N

#	Article	IF	CITATIONS
19	Highly Enantioselective Proline atalysed Direct Aldol Reaction of Chloroacetone and Aromatic Aldehydes. Chemistry - A European Journal, 2012, 18, 5188-5190.	3.3	29
20	Direct Reaction of Dibromoacetic Acid with Aldehydes Promoted by Samarium Diiodide:Â An Easy, Efficient, and Rapid Synthesis of (E)-α,β-Unsaturated Carboxylic Acids with Total Stereoselectivityâ€. Journal of Organic Chemistry, 2006, 71, 1728-1731.	3.2	25
21	Sequential Synthesis of (E)-α,β-Unsaturated Primary Amides with Complete Stereoselectivity. Journal of Organic Chemistry, 2010, 75, 3451-3453.	3.2	23
22	The use of samarium or sodium iodide salts as an alternative for the aza-Henry reaction. Tetrahedron, 2012, 68, 1736-1744.	1.9	23
23	A Convenient Samarium-Promoted Synthesis of Aliphatic (E)-Nitroalkenes under Mild Conditions. Journal of Organic Chemistry, 2007, 72, 5421-5423.	3.2	21
24	TBD/Al2O3: a novel catalytic system for dynamic intermolecular aldol reactions that exhibit complex system behaviour. Organic and Biomolecular Chemistry, 2012, 10, 1976.	2.8	20
25	Synthesis of E-α,β-Unsaturated Ketones with Complete Stereoselectivity via Sequential Aldol-Type/Elimination Reactions Promoted by Samarium ÂĐiiodide or Chromium Dichloride. Synlett, 2006, 2006, 837-840.	1.8	19
26	Deuteration of α,β-acetylenic esters, amides, or carboxylic acids without using deuterium gas: synthesis of 2,2,3,3-tetradeuterioesters, amides, or acids. Tetrahedron Letters, 2004, 45, 2129-2131.	1.4	17
27	An Easy, Efficient, and Completely Stereoselective Synthesis of (E)-α,β-Unsaturated Esters via Sequential Aldol-Type/Elimination Reactions Promoted by Samarium Diiodide or Chromium Dichloride. Journal of Organic Chemistry, 2005, 70, 6111-6113.	3.2	17
28	TBD-catalyzed α-sulfenylation of cyclic ketones: desymmetrization of 4-substituted cyclohexanones. Tetrahedron, 2012, 68, 6438-6446.	1.9	14
29	Asymmetric Construction of Quaternary Stereocenters: Synthesis of Enantiopure Amino Acidâ€Based Tricyclic α,βâ€Enones through an <i>ipso</i> â€Friedel–Crafts/Michael Addition Cascade. Advanced Synthesis and Catalysis, 2012, 354, 295-300.	4.3	13
30	A Convenient Synthesis of (E)-α,β-Unsaturated Esters with Total Stereoselectivity Promoted by Catalytic Samarium Diiodide. Synlett, 2011, 2011, 262-264.	1.8	9
31	Samariumâ€Promoted Asymmetric Aldol–Tishchenko Reaction: Synthesis of Amino Acidâ€Derived 4â€Aminoâ€1,3â€diols. Advanced Synthesis and Catalysis, 2012, 354, 1679-1684.	4.3	9
32	Synthesis and Synthetic Applications of Samarium Enolates of Unmasked Amides: Efficient Synthesis of 3-Aminoamides and 3-Amino-2-chloroamides. Synlett, 2010, 2010, 2119-2121.	1.8	8
33	Totally Selective Synthesis of Enantiopure (3S,5S)- and (3R,5R)-4-Amino-3,5-dihydroxypiperidines from Aminodiepoxides Derived from Serine. Journal of Organic Chemistry, 2008, 73, 6048-6051.	3.2	7
34	Stereoselective Synthesis of Carbohydrate-Derived N-Sulfonyl Aziridines. Synlett, 2013, 24, 181-184.	1.8	7
35	Aza-Reformatsky Reaction Promoted by Catalytic Samarium Diiodide: SynthesisÂof β-Amino Esters or Amides. Synlett, 2014, 25, 1709-1712.	1.8	7
36	General Preparation of 1‣ubstituted (<i>E</i>)â€1,3â€Dienes under Mild Conditions. European Journal of Organic Chemistry, 2015, 2015, 2524-2530.	2.4	5

CARMEN CONCELLÃ³N

#	Article	IF	CITATIONS
37	Broadening the Scope of Steroidal Scaffolds: The Umpolung of a Bis-Primary Amine Precatalyst for the Insertion of CO ₂ into Epoxides. Organic Letters, 2020, 22, 6988-6992.	4.6	5
38	An Efficient Synthesis of 2-Bromo-3-hydroxy Esters by Reaction of Ketones with Ethyl Dibromoacetate Promoted by Samarium Diiodide. European Journal of Organic Chemistry, 2006, 2006, 2197-2200.	2.4	4
39	N-Heterocyclic Carbene Catalysed Oxygen-to-Carbon Carboxyl Transfer of Indolyl and Benzofuranyl Carbonates. Synthesis, 2008, 2008, 2805-2818.	2.3	4
40	Chromium-Mediated Stereoselective Synthesis of Carbohydrate-Derived (E)-α,β-Unsaturated Esters or Amides. Journal of Organic Chemistry, 2011, 76, 5461-5465.	3.2	4
41	Synthesis of Highly Functionalized Enantiopure Halocyclopropanes Derived from Carbohydrates. European Journal of Organic Chemistry, 2013, 2013, 4953-4961.	2.4	4
42	Total Regioselective and Diastereospecific Iodolysis of 2,3-Epoxyamides Promoted by Sml2:Â Synthesis of (2R*,3R*)- or (2R*,3S*)-2-Hydroxy-3-iodoamides. Journal of Organic Chemistry, 2004, 69, 6923-6926.	3.2	3
43	Synthesis and Synthetic Applications of α,β-Dideuterio-α-amino Esters Promoted by Samarium Diiodide. Synlett, 2008, 2008, 402-404.	1.8	3
44	Mimicking Enzymes: Asymmetric Induction inside a Carbamate–Based Steroidal Cleft. Organic Letters, 2019, 21, 3994-3997.	4.6	3
45	On the impact of a phosphoryl group in the recognition capabilities of 2-aminopyridines toward carboxylic acids. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	1
46	Deuteration of α,β-Acetylenic Esters, Amides, or Carboxylic Acids Without Using Deuterium Gas: Synthesis of 2,2,3,3-Tetradeuterioesters, Amides, or Acids ChemInform, 2004, 35, no.	0.0	0
47	Total Regioselective and Diastereospecific Iodolysis of 2,3-Epoxyamides Promoted by SmI2: Synthesis of (2R*,3R*)- or (2R*,3S*)-2-Hydroxy-3-iodoamides ChemInform, 2005, 36, no.	0.0	Ο
48	An Easy, Efficient, and Completely Stereoselective Synthesis of (E)-α,β-Unsaturated Esters via Sequential Aldol-Type/Elimination Reactions Promoted by Samarium Diiodide or Chromium Dichloride ChemInform, 2005, 36, no.	0.0	0
49	Cooperative Guanidinium/Proline Organocatalytic Systems. Topics in Heterocyclic Chemistry, 2015, , 1-26.	0.2	Ο
50	Unraveling the Role of Supramolecular Additives in a Proline atalyzed Reaction. European Journal of Organic Chemistry, 2019, 2019, 188-198.	2.4	0