Anuradha Chowdhary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3367010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>In Vitro</i> Antifungal Combination of Terbinafine with Itraconazole against Isolates of <i>Trichophyton</i> Species. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0144921.	1.4	7
2	Development of a Multiplex PCR Short Tandem Repeat Typing Scheme for Candida krusei. Journal of Clinical Microbiology, 2022, 60, JCM0203221.	1.8	9
3	An Indian lineage of Histoplasma with strong signatures of differentiation and selection. Fungal Genetics and Biology, 2022, 158, 103654.	0.9	5
4	Comment on: Multicentre validation of a EUCAST method for the antifungal susceptibility testing of microconidia-forming dermatophytes. Journal of Antimicrobial Chemotherapy, 2022, 77, 1209-1210.	1.3	6
5	Ventriculoperitoneal shunt infection by Cryptococcus neoformans sensu stricto: Case report and literature review. Revista Iberoamericana De Micologia, 2022, 39, 16-20.	0.4	2
6	Candida auris on Apples: Diversity and Clinical Significance. MBio, 2022, 13, e0051822.	1.8	29
7	Comparative Transcriptomics Reveal Possible Mechanisms of Amphotericin B Resistance in Candida auris. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	4
8	Isolation of Candida auris in Clinical Specimens. Methods in Molecular Biology, 2022, , 3-20.	0.4	2
9	Multidrug resistant tinea corporis/cruris: response to voriconazole. Journal De Mycologie Medicale, 2022, , 101306.	0.7	5
10	Exophiala dermatitidis as a cause of central line associated bloodstream infection in an infant: Case report and literature review. Revista Iberoamericana De Micologia, 2021, 38, 12-15.	0.4	6
11	Antifungal Activity of a Medical-Grade Honey Formulation against Candida auris. Journal of Fungi (Basel, Switzerland), 2021, 7, 50.	1.5	28
12	Colonisation and Transmission Dynamics of Candida auris among Chronic Respiratory Diseases Patients Hospitalised in a Chest Hospital, Delhi, India: A Comparative Analysis of Whole Genome Sequencing and Microsatellite Typing. Journal of Fungi (Basel, Switzerland), 2021, 7, 81.	1.5	29
13	Evaluation of point of care serum cryptococcal antigen by lateral flow immunoassay for diagnosis of cryptococcosis and cryptococcal meningitis in HIV-positive patients. Indian Journal of Sexually Transmitted Diseases and AIDS, 2021, 42, 14.	0.1	1
14	Are We Ready for Nosocomial Candida auris Infections? Rapid Identification and Antifungal Resistance Detection Using MALDI-TOF Mass Spectrometry May Be the Answer. Frontiers in Cellular and Infection Microbiology, 2021, 11, 645049.	1.8	6
15	Taxonomy of the Trichophyton mentagrophytes/T. interdigitale Species Complex Harboring the Highly Virulent, Multiresistant Genotype T. indotineae. Mycopathologia, 2021, 186, 315-326.	1.3	76
16	Environmental Isolation of Candida auris from the Coastal Wetlands of Andaman Islands, India. MBio, 2021, 12, .	1.8	90
17	Evaluation of DermaGenius [®] resistance realâ€ŧime polymerase chain reaction for rapid detection of terbinafineâ€ŧesistant <i>Trichophyton</i> species. Mycoses, 2021, 64, 721-726.	1.8	22
18	Antifungal Susceptibility and Mutations in the Squalene Epoxidase Gene in Dermatophytes of the Trichophyton mentagrophytes Species Complex. Antimicrobial Agents and Chemotherapy, 2021, 65, e0005621.	1.4	49

#	Article	IF	CITATIONS
19	Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. Lancet Infectious Diseases, The, 2021, 21, e246-e257.	4.6	167
20	Predicting a therapeutic cutâ€off serum level of itraconazole in recalcitrant tinea corporis and cruris—A prospective trial. Mycoses, 2021, 64, 1480-1488.	1.8	20
21	A High Frequency of <i>Candida auris</i> Blood Stream Infections in Coronavirus Disease 2019 Patients Admitted to Intensive Care Units, Northwestern India: A Case Control Study. Open Forum Infectious Diseases, 2021, 8, .	0.4	32
22	<i>In vitro</i> activity of the novel antifungal olorofim against dermatophytes and opportunistic moulds including <i>Penicillium</i> and <i>Talaromyces</i> species. Journal of Antimicrobial Chemotherapy, 2021, 76, 1229-1233.	1.3	23
23	A global call for talaromycosis to be recognised as a neglected tropical disease. The Lancet Global Health, 2021, 9, e1618-e1622.	2.9	52
24	Candida auris—"Ten Years After― Journal of Fungi (Basel, Switzerland), 2020, 6, 2.	1.5	4
25	Candida blankii: an emerging yeast in an outbreak of fungaemia in neonates in Delhi, India. Clinical Microbiology and Infection, 2020, 26, 648.e5-648.e8.	2.8	20
26	Genotypic diversity in clinical and environmental isolates ofCryptococcus neoformansfrom India using multilocus microsatellite and multilocus sequence typing. Mycoses, 2020, 63, 284-293.	1.8	12
27	Manogepix (APX001A) <i>In Vitro</i> Activity against Candida auris: Head-to-Head Comparison of EUCAST and CLSI MICs. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	30
28	The lurking scourge of multidrug resistant Candida auris in times of COVID-19 pandemic. Journal of Global Antimicrobial Resistance, 2020, 22, 175-176.	0.9	54
29	Multidrug-Resistant <i>Candida auris</i> Infections in Critically III Coronavirus Disease Patients, India, April–July 2020. Emerging Infectious Diseases, 2020, 26, 2694-2696.	2.0	221
30	Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nature Microbiology, 2020, 5, 1516-1531.	5.9	75
31	The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of Candida auris. MSphere, 2020, 5, .	1.3	24
32	Development of Candida auris Short Tandem Repeat Typing and Its Application to a Global Collection of Isolates. MBio, 2020, 11, .	1.8	56
33	Rezafungin <i>In Vitro</i> Activity against Contemporary Nordic Clinical <i>Candida</i> Isolates and <i>Candida auris</i> Determined by the EUCAST Reference Method. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	34
34	<i>In Vitro</i> Activity of Ibrexafungerp (SCY-078) against <i>Candida auris</i> Isolates as Determined by EUCAST Methodology and Comparison with Activity against <i>C. albicans</i> and <i>C. glabrata</i> and with the Activities of Six Comparator Agents. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	50
35	Outbreak of <i>Dirkmeia churashimaensis</i> Fungemia in a Neonatal Intensive Care Unit, India. Emerging Infectious Diseases, 2020, 26, 764-768.	2.0	7
36	Colistin interacts synergistically with echinocandins against Candida auris. International Journal of Antimicrobial Agents, 2020, 55, 105901.	1.1	37

#	Article	IF	CITATIONS
37	Antifungal resistance in clinically significant fungi. Fungal Genetics and Biology, 2020, 139, 103369.	0.9	1
38	Multicentre validation of a EUCAST method for the antifungal susceptibility testing of microconidia-forming dermatophytes. Journal of Antimicrobial Chemotherapy, 2020, 75, 1807-1819.	1.3	37
39	High-Frequency Direct Detection of Triazole Resistance in Aspergillus fumigatus from Patients with Chronic Pulmonary Fungal Diseases in India. Journal of Fungi (Basel, Switzerland), 2020, 6, 67.	1.5	30
40	Pheohyphomycosis: A curious case of cyst. Indian Journal of Dermatology, Venereology and Leprology, 2020, 86, 542.	0.2	1
41	In Vitro Interaction of Geldanamycin with Triazoles and Echinocandins Against Common and Emerging Candida Species. Mycopathologia, 2019, 184, 607-613.	1.3	24
42	Antifungal resistance in dermatophytes: Recent trends and therapeutic implications. Fungal Genetics and Biology, 2019, 132, 103255.	0.9	113
43	Anti-fungal activity of a novel triazole, PC1244, against emerging azole-resistant Aspergillus fumigatus and other species of Aspergillus. Journal of Antimicrobial Chemotherapy, 2019, 74, 2950-2958.	1.3	12
44	Genomic perspective of triazole resistance in clinical and environmental Aspergillus fumigatus isolates without cyp51A mutations. Fungal Genetics and Biology, 2019, 132, 103265.	0.9	39
45	Thermogenic Characterization and Antifungal Susceptibility of Candida auris by Microcalorimetry. Journal of Fungi (Basel, Switzerland), 2019, 5, 103.	1.5	8
46	Blastomycosis Misdiagnosed as Tuberculosis, India. Emerging Infectious Diseases, 2019, 25, 1776-1777.	2.0	9
47	A unique multidrug-resistant clonal Trichophyton population distinct from Trichophyton mentagrophytes/Trichophyton interdigitale complex causing an ongoing alarming dermatophytosis outbreak in India: Genomic insights and resistance profile. Fungal Genetics and Biology, 2019, 133, 103266	0.9	93
48	Candida auris Identification and Rapid Antifungal Susceptibility Testing Against Echinocandins by MALDI-TOF MS. Frontiers in Cellular and Infection Microbiology, 2019, 9, 20.	1.8	48
49	Emergence of clonal fluconazole-resistant Candida parapsilosis clinical isolates in a multicentre laboratory-based surveillance study in India. Journal of Antimicrobial Chemotherapy, 2019, 74, 1260-1268.	1.3	61
50	Killing of <i>Candida auris</i> by <scp>UV</scp> : Importance of exposure time and distance. Mycoses, 2019, 62, 408-412.	1.8	49
51	<i>In Vitro</i> Antifungal Combination of Flucytosine with Amphotericin B, Voriconazole, or Micafungin against Candida auris Shows No Antagonism. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	39
52	What's new on emerging resistant Candida species. Intensive Care Medicine, 2019, 45, 512-515.	3.9	36
53	Perspectives on misidentification of <i>Trichophyton interdigitale</i> / <i>Trichophyton mentagrophytes</i> using internal transcribed spacer region sequencing: Urgent need to update the sequence database. Mycoses, 2019, 62, 11-15.	1.8	40
54	Indifferent effect of nonsteroidal anti-inflammatory drugs (NSAIDs) combined with fluconazole against multidrug-resistant Candida auris. Current Medical Mycology, 2019, 5, 26-30.	0.8	6

#	Article	IF	CITATIONS
55	Allergic Bronchopulmonary Mycosis due to fungi other than Aspergillus. European Annals of Allergy and Clinical Immunology, 2019, 51, 75.	0.4	13
56	Clinical implications of antifungal drug susceptibility testing of dermatophytes. Indian Dermatology Online Journal, 2019, 10, 737.	0.2	3
57	Comparative virulence of <i>Candida auris</i> with <i>Candida haemulonii</i> , <i> Candida glabrata</i> and <i>Candida albicans</i> in a murine model. Mycoses, 2018, 61, 377-382.	1.8	98
58	Absence of Azole or Echinocandin Resistance in Candida glabrata Isolates in India despite Background Prevalence of Strains with Defects in the DNA Mismatch Repair Pathway. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	47
59	High terbinafine resistance in <i>Trichophyton interdigitale</i> isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses, 2018, 61, 477-484.	1.8	237
60	Understanding Echinocandin Resistance in the Emerging Pathogen Candida auris. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	165
61	Emergence of azole resistant <i>Aspergillus fumigatus</i> and One Health: time to implement environmental stewardship. Environmental Microbiology, 2018, 20, 1299-1301.	1.8	47
62	<i>In Vitro</i> and <i>In Vivo</i> Efficacy of a Novel and Long-Acting Fungicidal Azole, PC1244, on Aspergillus fumigatus Infection. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	24
63	Posaconazole MIC Distributions for Aspergillus fumigatus Species Complex by Four Methods: Impact of <i>cyp51A</i> Mutations on Estimation of Epidemiological Cutoff Values. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	30
64	Environmental distribution of <i>Cryptococcus</i> species and some other yeastâ€like fungi in India. Mycoses, 2018, 61, 305-313.	1.8	21
65	Investigation of Multiple Resistance Mechanisms in Voriconazole-Resistant Aspergillus flavus Clinical Isolates from a Chest Hospital Surveillance in Delhi, India. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	39
66	A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. Journal of Antimicrobial Chemotherapy, 2018, 73, 891-899.	1.3	380
67	In vitro combination of voriconazole with micafungin against azole-resistant clinical isolates of Aspergillus fumigatus from different geographical regions. Diagnostic Microbiology and Infectious Disease, 2018, 91, 266-268.	0.8	8
68	Triazole resistance surveillance in Aspergillus fumigatus. Medical Mycology, 2018, 56, S83-S92.	0.3	114
69	A synthetic construct for genetic engineering of the emerging pathogenic yeast Candida auris. Plasmid, 2018, 95, 7-10.	0.4	8
70	Complete cure of Fusarium solani sp. complex onychomycosis with Qs NdYAG treatment. Dermatologic Therapy, 2018, 31, e12580.	0.8	6
71	Correlation of <i>In Vitro</i> Susceptibility Based on MICs and Squalene Epoxidase Mutations with Clinical Response to Terbinafine in Patients with Tinea Corporis/Cruris. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	90
72	Candida auris: a global fungal public health threat. Lancet Infectious Diseases, The, 2018, 18, 1298-1299.	4.6	69

#	Article	IF	CITATIONS
73	Genotyping of Aspergillus fumigatus in Formalin-Fixed Paraffin-Embedded Tissues and Serum Samples From Patients With Invasive Aspergillosis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 377.	1.8	5
74	Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. Journal of Intensive Care, 2018, 6, 69.	1.3	194
75	Itraconazole, Voriconazole, and Posaconazole CLSI MIC Distributions for Wild-Type and Azole-Resistant Aspergillus fumigatus Isolates. Journal of Fungi (Basel, Switzerland), 2018, 4, 103.	1.5	38
76	Internal validation of <scp>GPS</scp> ^{â,,¢} <scp>MONODOSE</scp> CanAur dtecâ€ <scp>qPCR</scp> kit following the <scp>UNE</scp> / <scp>EN ISO</scp> / <scp>IEC</scp> 17025:2005 for detection of the emerging yeast <i>Candida auris</i> . Mycoses, 2018, 61, 877-884.	1.8	28
77	Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon?. Frontiers in Microbiology, 2018, 9, 516.	1.5	66
78	Candida auris: An emerging drug resistant yeast–ÂA mini-review. Journal De Mycologie Medicale, 2018, 28, 568-573.	0.7	70
79	Fiveâ€year profile of candidaemia at an Indian trauma centre: High rates of <i>Candida auris</i> blood stream infections. Mycoses, 2018, 61, 674-680.	1.8	72
80	APX001A <i>In Vitro</i> Activity against Contemporary Blood Isolates and Candida auris Determined by the EUCAST Reference Method. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	42
81	Limited <i>ERG11</i> Mutations Identified in Isolates of Candida auris Directly Contribute to Reduced Azole Susceptibility. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	125
82	Gene flow contributes to diversification of the major fungal pathogen Candida albicans. Nature Communications, 2018, 9, 2253.	5.8	131
83	Effectiveness of itraconazole and systemic steroids in the treatment of ABPA. , 2018, , .		0
84	Global Population Genetic Analysis of Aspergillus fumigatus. MSphere, 2017, 2, .	1.3	71
85	Molecular and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Characterization of Clinically Significant Melanized Fungi in India. Journal of Clinical Microbiology, 2017, 55, 1090-1103.	1.8	33
86	A prospective international Aspergillus terreus survey: an EFISG, ISHAM and ECMM joint study. Clinical Microbiology and Infection, 2017, 23, 776.e1-776.e5.	2.8	42
87	Comparison of EUCAST and CLSI Reference Microdilution MICs of Eight Antifungal Compounds for Candida auris and Associated Tentative Epidemiological Cutoff Values. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	189
88	Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen Candida auris. Journal of Clinical Microbiology, 2017, 55, 2445-2452.	1.8	140
89	Azole-Resistant Aspergillosis: Epidemiology, Molecular Mechanisms, and Treatment. Journal of Infectious Diseases, 2017, 216, S436-S444.	1.9	199
90	<i>In Vitro</i> Interactions of Echinocandins with Triazoles against Multidrug-Resistant <i>Candida auris</i> . Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	75

#	Article	IF	CITATIONS
91	Importance of Resolving Fungal Nomenclature: the Case of Multiple Pathogenic Species in the <i>Cryptococcus</i> Genus. MSphere, 2017, 2, .	1.3	124
92	The first cases of <i>Candida auris</i> candidaemia in Oman. Mycoses, 2017, 60, 569-575.	1.8	66
93	FungiScope [™] —Global Emerging Fungal Infection Registry. Mycoses, 2017, 60, 508-516.	1.8	47
94	Molecular bases of antifungal resistance in filamentous fungi. International Journal of Antimicrobial Agents, 2017, 50, 607-616.	1.1	40
95	Tracing Genetic Exchange and Biogeography of <i>Cryptococcus neoformans</i> var. <i>grubii</i> at the Global Population Level. Genetics, 2017, 207, 327-346.	1.2	105
96	Simultaneous Emergence of Multidrug-Resistant <i>Candida auris</i> on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clinical Infectious Diseases, 2017, 64, 134-140.	2.9	1,099
97	Phaeohyphomycosis Caused by Rhytidhysteron rufulum and Review of Literature. Mycopathologia, 2017, 182, 403-407.	1.3	22
98	Multidrug-Resistant Candida Auris: Need for Alert among Microbiologists. Indian Journal of Medical Microbiology, 2017, 35, 436.	0.3	2
99	Whole Genome-Based Amplified Fragment Length Polymorphism Analysis Reveals Genetic Diversity in Candida africana. Frontiers in Microbiology, 2017, 8, 556.	1.5	19
100	Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathogens, 2017, 13, e1006290.	2.1	501
101	Multicenter, International Study of MIC/MEC Distributions for Definition of Epidemiological Cutoff Values for Sporothrix Species Identified by Molecular Methods. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	72
102	Invasive pulmonary aspergillosis in immunocompetent patients acquired during renovation in a chest institute. , 2017, , .		0
103	Filamentous Fungi in Respiratory Infections. What Lies Beyond Aspergillosis and Mucormycosis?. PLoS Pathogens, 2016, 12, e1005491.	2.1	46
104	Epidemiology and molecular mechanisms of antifungal resistance inÂ <i>Candida</i> and <i>Aspergillus</i> . Mycoses, 2016, 59, 198-219.	1.8	142
105	Diversity and origins of Indian multiâ€ŧriazole resistant strains of <i>Aspergillus fumigatus</i> . Mycoses, 2016, 59, 450-466.	1.8	33
106	Identification and typing of the emerging pathogen <i>Candida auris</i> by matrixâ€assisted laser desorption ionisation time of flight mass spectrometry. Mycoses, 2016, 59, 535-538.	1.8	86
107	First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrobial Resistance and Infection Control, 2016, 5, 35.	1.5	535
108	Clinical implications of globally emerging azole resistance in <i>Aspergillus fumigatus</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150460.	1.8	243

#	Article	IF	CITATIONS
109	<i>Candida haemulonii</i> species complex: an emerging species in India and its genetic diversity assessed with multilocus sequence and amplified fragment-length polymorphism analyses. Emerging Microbes and Infections, 2016, 5, 1-12.	3.0	55
110	Identification by Molecular Methods and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and Antifungal Susceptibility Profiles of Clinically Significant Rare Aspergillus Species in a Referral Chest Hospital in Delhi, India. Journal of Clinical Microbiology, 2016, 54, 2354-2364.	1.8	54
111	Azole Resistance in Moulds—Approach to Detection in a Clinical Laboratory. Current Fungal Infection Reports, 2016, 10, 96-106.	0.9	4
112	Multidrug-resistant Candida auris : †̃new kid on the block' in hospital-associated infections?. Journal of Hospital Infection, 2016, 94, 209-212.	1.4	180
113	Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. Clinical Microbiology and Infection, 2016, 22, 277.e1-277.e9.	2.8	127
114	Azole Resistance in <i>Aspergillus fumigatus</i> : Can We Retain the Clinical Use of Mold-Active Antifungal Azoles?. Clinical Infectious Diseases, 2016, 62, 362-368.	2.9	468
115	Invasive Rhinosinusitis due to Alternaria alternata and Rhizopus arrhizus Mixed Infection: A Case Report and Review. International Journal of Infection, 2016, inpress, .	0.4	0
116	Invasive Rhinosinusitis due to Alternaria alternata and Rhizopus arrhizus Mixed Infection: A Case Report and Review. International Journal of Infection, 2016, 4, .	0.4	1
117	The role of fungal sensitisation in clinical presentation in patients with chronic obstructive pulmonary disease. Mycoses, 2015, 58, 531-535.	1.8	13
118	Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia. Frontiers in Microbiology, 2015, 06, 428.	1.5	89
119	Molecular Epidemiology and In-Vitro Antifungal Susceptibility of Aspergillus terreus Species Complex Isolates in Delhi, India: Evidence of Genetic Diversity by Amplified Fragment Length Polymorphism and Microsatellite Typing. PLoS ONE, 2015, 10, e0118997.	1.1	53
120	Pathogenicity of Candida viswanathii for normal and cortisone-treated mice. Journal De Mycologie Medicale, 2015, 25, 287-292.	0.7	6
121	Comparison of the EUCAST and CLSI Broth Microdilution Methods for Testing Isavuconazole, Posaconazole, and Amphotericin B against Molecularly Identified Mucorales Species. Antimicrobial Agents and Chemotherapy, 2015, 59, 7882-7887.	1.4	41
122	Reply to "Matrix-Assisted Laser Desorption Ionization-Time of Flight identification ofSchizophyllum commune: Perspectives on the review by Chowdhary etÂal.― Medical Mycology, 2015, 53, 898-899.	0.3	3
123	Multicenter Evaluation of MIC Distributions for Epidemiologic Cutoff Value Definition To Detect Amphotericin B, Posaconazole, and Itraconazole Resistance among the Most Clinically Relevant Species of Mucorales. Antimicrobial Agents and Chemotherapy, 2015, 59, 1745-1750.	1.4	97
124	<i>Trichosporon asahii</i> infection presenting as chronic meningoâ€ventriculitis and intra ventricular fungal ball: a case report and literature review. Mycoses, 2015, 58, 99-103.	1.8	12
125	Black Molds and Melanized Yeasts Pathogenic to Humans. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019570.	2.9	65
126	<i>In Vitro</i> Activities of Eight Antifungal Drugs against a Global Collection of Genotyped Exserohilum Isolates. Antimicrobial Agents and Chemotherapy, 2015, 59, 6642-6645.	1.4	10

#	Article	IF	CITATIONS
127	Triazole-resistant Aspergillus fumigatus harbouring G54 mutation: Is it de novo or environmentally acquired?. Journal of Global Antimicrobial Resistance, 2015, 3, 69-74.	0.9	81
128	Multicenter Study of Isavuconazole MIC Distributions and Epidemiological Cutoff Values for the Cryptococcus neoformans-Cryptococcus gattii Species Complex Using the CLSI M27-A3 Broth Microdilution Method. Antimicrobial Agents and Chemotherapy, 2015, 59, 666-668.	1.4	58
129	Multidrug-Resistant Candida auris Misidentified as Candida haemulonii: Characterization by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and DNA Sequencing and Its Antifungal Susceptibility Profile Variability by Vitek 2, CLSI Broth Microdilution, and Etest Method. Journal of Clinical Microbiology. 2015. 53. 1823-1830.	1.8	409
130	Draft Genome Sequence of a Fluconazole-Resistant <i>Candida auris</i> Strain from a Candidemia Patient in India. Genome Announcements, 2015, 3, .	0.8	62
131	Genomic Context of Azole Resistance Mutations in Aspergillus fumigatus Determined Using Whole-Genome Sequencing. MBio, 2015, 6, e00536.	1.8	171
132	International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resistance Updates, 2015, 21-22, 30-40.	6.5	262
133	<i>In Vitro</i> Susceptibility Profiles of Eight Antifungal Drugs against Clinical and Environmental Strains of Phaeoacremonium. Antimicrobial Agents and Chemotherapy, 2015, 59, 7818-7822.	1.4	9
134	Invasive Mycosis Due to Species of Blastobotrys in Immunocompromised Patients with Reduced Susceptibility to Antifungals. Journal of Clinical Microbiology, 2014, 52, 4094-4099.	1.8	9
135	Voriconazole-Resistant Penicillium oxalicum: An Emerging Pathogen in Immunocompromised Hosts. Open Forum Infectious Diseases, 2014, 1, ofu029.	0.4	23
136	<i>In Vitro</i> Antifungal Susceptibility Profile and Correlation of Mycelial and Yeast Forms of Molecularly Characterized Histoplasma capsulatum Strains from India. Antimicrobial Agents and Chemotherapy, 2014, 58, 5613-5616.	1.4	17
137	Multi-azole-resistant Aspergillus fumigatus in the environment in Tanzania. Journal of Antimicrobial Chemotherapy, 2014, 69, 2979-2983.	1.3	122
138	First neonatal case of fungaemia due to <i><scp>P</scp>seudozyma aphidis</i> and a global literature review. Mycoses, 2014, 57, 64-68.	1.8	25
139	Recognizing filamentous basidiomycetes as agents of human disease: A review. Medical Mycology, 2014, 52, 782-797.	0.3	76
140	Molecular characterization and <i>in vitro</i> antifungal susceptibility of 80 clinical isolates of mucormycetes in Delhi, India. Mycoses, 2014, 57, 97-107.	1.8	48
141	<i>In Vitro</i> Activities of Eight Antifungal Drugs against 104 Environmental and Clinical Isolates of Aureobasidium pullulans. Antimicrobial Agents and Chemotherapy, 2014, 58, 5629-5631.	1.4	22
142	Multidrug-resistant endemic clonal strain of Candida auris in India. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 919-926.	1.3	303
143	ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clinical Microbiology and Infection, 2014, 20, 27-46.	2.8	383
144	ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clinical Microbiology and Infection, 2014, 20, 47-75.	2.8	262

ANURADHA CHOWDHARY

#	Article	IF	CITATIONS
145	ESCMID†and ECMMâ€; joint clinical guidelines for the diagnosis and management of mucormycosis 2013. Clinical Microbiology and Infection, 2014, 20, 5-26.	2.8	547
146	Azole-resistant Aspergillus fumigatus with the environmental TR46/Y121F/T289A mutation in India. Journal of Antimicrobial Chemotherapy, 2014, 69, 555-557.	1.3	113
147	Multilocus sequence typing of <i>Candida africana</i> from patients with vulvovaginal candidiasis in New Delhi, India. Mycoses, 2014, 57, 544-552.	1.8	22
148	Exploring azole antifungal drug resistance in <i>Aspergillus fumigatus</i> with special reference to resistance mechanisms. Future Microbiology, 2014, 9, 697-711.	1.0	118
149	Molecular characterization of Cryptococcus gattii genotype AFLP6/VGII isolated from woody debris of divi-divi (Caesalpinia coriaria), Bonaire, Dutch Caribbean. Revista Iberoamericana De Micologia, 2014, 31, 193-196.	0.4	12
150	A case of allergic fungal rhinosinusitis due to Ceratocystis adiposa. Diagnostic Microbiology and Infectious Disease, 2014, 78, 196-198.	0.8	3
151	Allergic bronchopulmonary mycosis due to fungi other than <i>Aspergillus</i> : a global overview. Critical Reviews in Microbiology, 2014, 40, 30-48.	2.7	174
152	A rare case of breakthrough fungal pericarditis due to fluconazoleâ€resistant Candida auris in a patient with chronic liver disease. JMM Case Reports, 2014, 1, .	1.3	26
153	<i>Schizophyllum commune</i> as an emerging fungal pathogen: a review and report of two cases. Mycoses, 2013, 56, 1-10.	1.8	91
154	Candida nivariensis as an etiologic agent of vulvovaginal candidiasis in a tertiary care hospital of New Delhi, India. Diagnostic Microbiology and Infectious Disease, 2013, 76, 46-50.	0.8	23
155	First environmental isolation of <i>Cryptococcus gattii</i> , genotype AFLP5, from India and a global review. Mycoses, 2013, 56, 222-228.	1.8	22
156	New Clonal Strain of <i>Candida auris</i> , Delhi, India. Emerging Infectious Diseases, 2013, 19, 1670-1673.	2.0	320
157	Emergence of Azole-Resistant Aspergillus fumigatus Strains due to Agricultural Azole Use Creates an Increasing Threat to Human Health. PLoS Pathogens, 2013, 9, e1003633.	2.1	300
158	Clinical Significance of Filamentous Basidiomycetes Illustrated by Isolates of the Novel Opportunist Ceriporia lacerata from the Human Respiratory Tract. Journal of Clinical Microbiology, 2013, 51, 585-590.	1.8	37
159	Clinical Significance and Molecular Characterization of Nonsporulating Molds Isolated from the Respiratory Tracts of Bronchopulmonary Mycosis Patients with Special Reference to Basidiomycetes. Journal of Clinical Microbiology, 2013, 51, 3331-3337.	1.8	60
160	Molecular Characterization and <i>In Vitro</i> Antifungal Susceptibility Profile of Schizophyllum commune, an Emerging Basidiomycete in Bronchopulmonary Mycoses. Antimicrobial Agents and Chemotherapy, 2013, 57, 2845-2848.	1.4	35
161	Reply to "Implications of High Antifungal Susceptibility on Schizophyllum commune-Associated Allergy in Clinical Practice― Antimicrobial Agents and Chemotherapy, 2013, 57, 5784-5785.	1.4	3
162	Multicenter Study of Isavuconazole MIC Distributions and Epidemiological Cutoff Values for Aspergillus spp. for the CLSI M38-A2 Broth Microdilution Method. Antimicrobial Agents and Chemotherapy, 2013, 57, 3823-3828.	1.4	82

#	Article	IF	CITATIONS
163	Environmental study of azoleâ€resistant <i><scp>A</scp>spergillus fumigatus</i> with TR ₃₄ /L98H mutations in the <i>cyp51</i> A gene in <scp>I</scp> ran. Mycoses, 2013, 56, 659-663.	1.8	98
164	Blastomycosis in India: report of an imported case and current status. Medical Mycology, 2013, 51, 185-192.	0.3	31
165	Geographically Structured Populations of Cryptococcus neoformans Variety grubii in Asia Correlate with HIV Status and Show a Clonal Population Structure. PLoS ONE, 2013, 8, e72222.	1.1	83
166	New Clonal Strain of <i>Candida auris</i> , Delhi, India. Emerging Infectious Diseases, 2013, 19, .	2.0	0
167	Environmental prevalence of <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> in India: An update. Critical Reviews in Microbiology, 2012, 38, 1-16.	2.7	70
168	A rare case of allergic bronchopulmonary mycosis caused byAlternaria alternata. Medical Mycology, 2012, 50, 890-896.	0.3	29
169	Allergic Broncho Pulmonary Aspergillosis Complicated by Nocardiosis. Case Reports in Pulmonology, 2012, 2012, 1-5.	0.2	4
170	First Human Case of Pulmonary Fungal Ball Due to a Perenniporia Species (a Basidiomycete). Journal of Clinical Microbiology, 2012, 50, 3786-3791.	1.8	14
171	Cryptococcus neoformans-Cryptococcus gattii Species Complex: an International Study of Wild-Type Susceptibility Endpoint Distributions and Epidemiological Cutoff Values for Amphotericin B and Flucytosine. Antimicrobial Agents and Chemotherapy, 2012, 56, 3107-3113.	1.4	129
172	Isolation of multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR/L98H mutations in the cyp51A gene in India. Journal of Antimicrobial Chemotherapy, 2012, 67, 362-366.	1.3	173
173	Cryptococcus neoformans-Cryptococcus gattii Species Complex: an International Study of Wild-Type Susceptibility Endpoint Distributions and Epidemiological Cutoff Values for Fluconazole, Itraconazole, Posaconazole, and Voriconazole. Antimicrobial Agents and Chemotherapy, 2012, 56, 5898-5906.	1.4	212
174	Resistance of Asian Cryptococcus neoformans Serotype A Is Confined to Few Microsatellite Genotypes. PLoS ONE, 2012, 7, e32868.	1.1	42
175	Clonal Expansion and Emergence of Environmental Multiple-Triazole-Resistant Aspergillus fumigatus Strains Carrying the TR34/L98H Mutations in the cyp51A Gene in India. PLoS ONE, 2012, 7, e52871.	1.1	180
176	Temperate Climate Niche for <i>Cryptococcus gattii</i> in Northern Europe. Emerging Infectious Diseases, 2012, 18, 172-174.	2.0	62
177	A rare case of allergic bronchopulmonary aspergillosis in a patient with chronic obstructive pulmonary disease. Indian Journal of Allergy Asthma and Immunology, 2012, 26, 20.	0.1	5
178	In vitro antifungal susceptibility profiles and genotypes of 308 clinical and environmental isolates of Cryptococcus neoformans var. grubii and Cryptococcus gattii serotype B from north-western India. Journal of Medical Microbiology, 2011, 60, 961-967.	0.7	71
179	Application of hypertonic Sabouraud glucose agar for differentiation of Candida dubliniensis from Candida albicans. Diagnostic Microbiology and Infectious Disease, 2011, 69, 440-442.	0.8	10
180	Genetic differentiation, recombination and clonal expansion in environmental populations of <i>Cryptococcus gattii</i> in India. Environmental Microbiology, 2011, 13, 1875-1888.	1.8	30

#	Article	IF	CITATIONS
181	Bipolaris <i>hawaiiensis</i> as etiologic agent of allergic bronchopulmonary mycosis: first case in a paediatric patient. Medical Mycology, 2011, 49, 1-6.	0.3	22
182	Seasonal variations in the prevalence of <i>Cryptococcus neoformans</i> var. <i>grubii</i> and <i>Cryptococcus gattii</i> in decayed wood inside trunk hollows of diverse tree species in north-western India: a retrospective study. Medical Mycology, 2011, 49, 320-323.	0.3	23
183	First isolations in India ofCandida nivariensis, a globally emerging opportunistic pathogen. Medical Mycology, 2010, 48, 416-420.	0.3	19
184	Rhinoentomophthoromycosis due to <i>Conidiobolus coronatus</i> . A case report and an overview of the disease in India. Medical Mycology, 2010, 48, 870-879.	0.3	23
185	First isolations in India of Candida nivariensis, a globally emerging opportunistic pathogen. Medical Mycology, 2010, 48, 1-6.	0.3	12
186	Cryptococcus neoformans serotype A and Cryptococcus gattii serotype B isolates differ in their susceptibilities to fluconazole and voriconazole. International Journal of Antimicrobial Agents, 2009, 33, 559-563.	1.1	15
187	The expanding host tree species spectrum of <i>Cryptococcus gattii</i> and <i>Cryptococcus neoformans</i> and their isolations from surrounding soil in India. Medical Mycology, 2008, 46, 823-833.	0.3	69
188	Long-distance dispersal and recombination in environmental populations of Cryptococcus neoformans var. grubii from India. Microbiology (United Kingdom), 2008, 154, 1513-1524.	0.7	111
189	A rare case of chromoblastomycosis in a renal transplant recipient caused by a non-sporulating species of <i>Rhytidhysteron</i> . Medical Mycology, 2008, 46, 163-166.	0.3	36
190	Comment on Singh et al.'s â€~cryptococcosis in a bandicoot rat'. Medical Mycology, 2007, 45, 655-656.	0.3	1
191	Antifungal susceptibility of Cryptococcus neoformans and Cryptococcus gattii isolates from decayed wood of trunk hollows of Ficus religiosa and Syzygium cumini trees in north-western India. Journal of Antimicrobial Chemotherapy, 2007, 60, 312-316.	1.3	37
192	Zygomycosis ? a case report and overview of the disease in India. Mycoses, 2007, 50, 247-254.	1.8	57
193	Evaluation of peptone glucose fluconazole agar as a selective medium for rapid and enhanced isolation ofAspergillus fumigatusfrom the respiratory tract of bronchopulmonary aspergillosis patients colonized byCandida albicans. Medical Mycology, 2006, 44, 343-348.	0.3	4
194	Comparison of multilocus sequence typing and Ca3 fingerprinting for molecular subtyping epidemiologically-related clinical isolates ofCandida albicans. Medical Mycology, 2006, 44, 405-417.	0.3	25
195	Distribution ofCryptococcus gattiiandCryptococcus neoformansin decayed trunk wood ofSyzygium cuminitrees in north-western India. Medical Mycology, 2006, 44, 623-630.	0.3	46
196	Spectrum of Fungal Keratitis in North India. Cornea, 2005, 24, 8-15.	0.9	183
197	Malassezia furfurin a case of onychomycosis: colonizer or etiologic agent?. Medical Mycology, 2005, 43, 87-90.	0.3	30

198 Ocular Cysticercosis — A Profile. Tropical Doctor, 2003, 33, 185-188.

0.2 21

#	Article	IF	CITATIONS
199	Disseminated Histoplasmosis Post-IL6 Inhibitor Use in A COVID-19 Patient. Journal of Microbiology and Infectious Diseases, 0, , 170-173.	0.1	3
200	Evaluation of Point of Care Serum Cryptococcal Antigen by Lateral Flow Immunoassay for Diagnosis of Cryptococcosis and Cryptococcal Meningitis in HIV Positive Patients. SSRN Electronic Journal, 0, , .	0.4	0