
RafaÅ, L GÃ³rny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/336652/publications.pdf Version: 2024-02-01

Ρλελά Ι <u>Λ</u>άβρην

#	Article	IF	CITATIONS
1	Detection and identification of potentially infectious gastrointestinal and respiratory viruses at workplaces of wastewater treatment plants with viability qPCR/RT-qPCR. Scientific Reports, 2022, 12, 4517.	3.3	5
2	Biofilm jako zagrożenie w zakÅ,adach produkcji i przetwarzania żywnoÅ›ci. Occupational Safety – Science and Practice, 2022, 606, 10-15.	0.0	0
3	Microbial contamination of money sorting facilities. Annals of Agricultural and Environmental Medicine, 2021, 28, 61-71.	1.0	1
4	Review of biological risks associated with the collection of municipal wastes. Science of the Total Environment, 2021, 791, 148287.	8.0	33
5	Occupational exposure to anaerobic bacteria in a waste sorting plant. Journal of the Air and Waste Management Association, 2021, 71, 1-11.	1.9	3
6	Microbial Aerosols: Sources, Properties, Health Effects, Exposure Assessment—A Review. KONA Powder and Particle Journal, 2020, 37, 64-84.	1.7	40
7	Size distribution of microbial aerosols in overground and subterranean treatment chambers at health resorts. Journal of Environmental Health Science & Engineering, 2020, 18, 1437-1450.	3.0	5
8	Prevalence of Bovine Leukemia Virus (BLV) and Bovine Adenovirus (BAdV) genomes among air and surface samples in dairy production. Journal of Occupational and Environmental Hygiene, 2020, 17, 312-323.	1.0	4
9	Adverse health outcomes among workers of wood pellet production facilities. Annals of Agricultural and Environmental Medicine, 2020, 27, 154-159.	1.0	5
10	Thermal Stability, Fire and Smoke Behaviour of Epoxy Composites Modified with Plant Waste Fillers. Polymers, 2019, 11, 1234.	4.5	39
11	Impact of air-conditioning system disinfection on microbial contamination of passenger cars. Air Quality, Atmosphere and Health, 2019, 12, 1127-1135.	3.3	15
12	Nasal lavage as analytical tool in assessment of exposure to particulate and microbial aerosols in wood pellet production facilities. Science of the Total Environment, 2019, 697, 134018.	8.0	6
13	Bacterial aerosols in a municipal landfill environment. Science of the Total Environment, 2019, 660, 288-296.	8.0	29
14	Across-shift changes in upper airways after exposure to bacterial cell wall components. Annals of Agricultural and Environmental Medicine, 2019, 26, 236-241.	1.0	3
15	Microbial contamination level and microbial diversity of occupational environment in commercial and traditional dairy plants. Annals of Agricultural and Environmental Medicine, 2019, 26, 555-565.	1.0	15
16	Microbial Air Quality in Municipal Buses Before and After Disinfection of Their Air-Conditioning Systems. Journal of Ecological Engineering, 2019, 20, 189-194.	1.1	4
17	Anaerobic bacteria in wastewater treatment plant. International Archives of Occupational and Environmental Health, 2018, 91, 571-579.	2.3	62
18	Prevalence of Human Parainfluenza Viruses and Noroviruses Genomes on Office Fomites. Food and Environmental Virology, 2018, 10, 133-140.	3.4	13

RafaÅ, L GÃ³rny

#	Article	IF	CITATIONS
19	Effect of electrical charges on potential of fibers for transport of microbial particles in dry and humid air. Journal of Aerosol Science, 2018, 116, 66-82.	3.8	7
20	Microbiological air quality in office buildings equipped with dventilation systems. Indoor Air, 2018, 28, 792-805.	4.3	40
21	Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polymer Bulletin, 2018, 75, 2511-2528.	3.3	66
22	Monitoring of bacterial pathogens at workplaces in power plant using biochemical and molecular methods. International Archives of Occupational and Environmental Health, 2017, 90, 285-295.	2.3	5
23	Molecular biology methods in assessing occupational exposure to harmful biological agents. Podstawy I Metody Oceny Åšrodowiska Pracy, 2017, 33, 5-16.	0.0	Ο
24	Exposure to flour dust in the occupational environment. International Journal of Occupational Safety and Ergonomics, 2015, 21, 241-249.	1.9	55
25	Airborne peptidoglycans as a supporting indicator of bacterial contamination in a metal processing plant. International Journal of Occupational Medicine and Environmental Health, 2015, 29, 427-437.	1.3	4
26	Exposure to culturable and total microbiota in cultural heritage conservation laboratories. International Journal of Occupational Medicine and Environmental Health, 2015, 29, 255-275.	1.3	25
27	Peptidoglycans in cutting fluids – a good indicator of bacterial contamination?. Annals of Agricultural and Environmental Medicine, 2014, 21, 256-258.	1.0	1
28	Bioaerosols of subterraneotherapy chambers at salt mine health resort. Aerobiologia, 2013, 29, 481-493.	1.7	14
29	Haemophilus influenzae as an airborne contamination in child day care centers. American Journal of Infection Control, 2013, 41, 438-442.	2.3	7
30	EXPOSURE OF VENTILATION SYSTEM CLEANING WORKERSTO HARMFUL MICROBIOLOGICAL AGENTS. Medycyna Pracy, 2013, 64, 613-23.	0.8	2
31	Effect of two aerosolization methods on the release of fungal propagules from a contaminated agar surface. Annals of Agricultural and Environmental Medicine, 2012, 19, 279-84.	1.0	11
32	Exposure to harmful microbiological agents during the handling of biomass for power production purposes. Medycyna Pracy, 2012, 63, 395-407.	0.8	8
33	Airborne and dust borne microorganisms in selected Polish libraries and archives. Building and Environment, 2011, 46, 1872-1879.	6.9	88
34	Microbial air quality at Szczawnica sanatorium, Poland. Annals of Agricultural and Environmental Medicine, 2011, 18, 63-71.	1.0	7
35	Bioaerosol assessment in naturally ventilated historical library building with restricted personnel access. Annals of Agricultural and Environmental Medicine, 2011, 18, 323-9.	1.0	28
36	Microbial contamination of storerooms at the Auschwitz-Birkenau Museum. Aerobiologia, 2010, 26, 125-133.	1.7	36

RafaÅ, L GÃ³rny

#	Article	IF	CITATIONS
37	Bacterial and Fungal Aerosols in Air-Conditioned Office Buildings in Warsaw, Poland—The Winter Season. International Journal of Occupational Safety and Ergonomics, 2010, 16, 465-476.	1.9	52
38	Endotoxins and β-glucans as markers of microbiological contaminationcharacteristics, detection, and environmental exposure. Annals of Agricultural and Environmental Medicine, 2010, 17, 193-208.	1.0	21
39	Viability of fungal and actinomycetal spores after microwave radiation of building materials. Annals of Agricultural and Environmental Medicine, 2007, 14, 313-24.	1.0	8
40	Spatial and temporal variations of PM2.5 concentration and composition throughout an urban area with high freeway density—the Greater Cincinnati study. Atmospheric Environment, 2004, 38, 1091-1105.	4.1	93
41	Metalworking fluid bioaerosols at selected workplaces in a steelworks. American Journal of Industrial Medicine, 2004, 46, 400-403.	2.1	20
42	Filamentous microorganisms and their fragments in indoor aira review. Annals of Agricultural and Environmental Medicine, 2004, 11, 185-97.	1.0	73
43	Release of Streptomyces albus propagules from contaminated surfaces. Environmental Research, 2003, 91, 45-53.	7.5	33
44	Evaluation of the Survival of Bacterial Contaminants in an Inhalable Insulin Powder. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2003, 16, 55-64.	1.2	1
45	Fungal Fragments as Indoor Air Biocontaminants. Applied and Environmental Microbiology, 2002, 68, 3522-3531.	3.1	316
46	Effect of electrical charges and fields on injury and viability of airborne bacteria. Biotechnology and Bioengineering, 2002, 79, 229-241.	3.3	68
47	Bacterial and fungal aerosols in indoor environment in Central and Eastern European countries. Annals of Agricultural and Environmental Medicine, 2002, 9, 17-23.	1.0	116
48	Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection. Journal of Aerosol Science, 2001, 32, 661-674.	3.8	175
49	Source strength of fungal spore aerosolization from moldy building material. Atmospheric Environment, 2001, 35, 4853-4862.	4.1	90
50	Size distribution of bacterial and fungal bioaerosols in indoor air. Annals of Agricultural and Environmental Medicine, 1999, 6, 105-113.	1.0	81
51	in living rooms occupied by cigarette smokers and non-smokers in Sosnowiec, Upper Silesia, Poland. Aerobiologia, 1998, 14, 235-239.	1.7	11