
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3366371/publications.pdf Version: 2024-02-01



PASMIIS KIÃIIED

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The UNITE database for molecular identification of fungi – recent updates and future perspectives.<br>New Phytologist, 2010, 186, 281-285.                                                                                                        | 7.3  | 1,563     |
| 2  | TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.                                                                                                                                           | 9.5  | 1,038     |
| 3  | UNITE: a database providing webâ€based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist, 2005, 166, 1063-1068.                                                                                                  | 7.3  | 912       |
| 4  | Fungal community analysis by highâ€ŧhroughput sequencing of amplified markers – a user's guide. New<br>Phytologist, 2013, 199, 288-299.                                                                                                           | 7.3  | 747       |
| 5  | High functional diversity within species of arbuscular mycorrhizal fungi. New Phytologist, 2004, 164, 357-364.                                                                                                                                    | 7.3  | 512       |
| 6  | Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates.<br>Nature Communications, 2017, 8, 1188.                                                                                                      | 12.8 | 451       |
| 7  | FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 2020, 105, 1-16.                                                                                                                          | 12.3 | 387       |
| 8  | Towards global patterns in the diversity and community structure of ectomycorrhizal fungi.<br>Molecular Ecology, 2012, 21, 4160-4170.                                                                                                             | 3.9  | 365       |
| 9  | The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils:<br>role in carbon cycling. Plant and Soil, 2013, 366, 1-27.                                                                                       | 3.7  | 262       |
| 10 | Molecular and morphological diversity of pezizalean ectomycorrhiza. New Phytologist, 2006, 170,<br>581-596.                                                                                                                                       | 7.3  | 208       |
| 11 | Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils – A review. Soil Biology and Biochemistry, 2013, 57, 1034-1047.                                                                   | 8.8  | 207       |
| 12 | Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a standâ€scale nitrogen deposition gradient. New Phytologist, 2012, 194, 278-286.                                                     | 7.3  | 149       |
| 13 | 454â€sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. Journal of Ecology, 2012, 100, 151-160.                                                                      | 4.0  | 131       |
| 14 | Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS<br>Microbiology Ecology, 2006, 58, 214-224.                                                                                                       | 2.7  | 129       |
| 15 | The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. Journal of Ecology, 2013, 101, 1335-1344.                                                                                            | 4.0  | 124       |
| 16 | Title is missing!. Plant and Soil, 2000, 226, 189-196.                                                                                                                                                                                            | 3.7  | 116       |
| 17 | Identification of mycorrhizal fungi from single pelotons ofDactylorhiza majalis(Orchidaceae) using<br>single-strand conformation polymorphism and mitochondrial ribosomal large subunit DNA<br>sequences. Molecular Ecology, 2001, 10, 2089-2093. | 3.9  | 97        |
| 18 | Colonisation and molecular diversity of arbuscular mycorrhizal fungi in the aquatic plants<br>Littorella uniflora and Lobelia dortmanna in southern Sweden. Mycological Research, 2004, 108,<br>616-625.                                          | 2.5  | 86        |

| #  | Article                                                                                                                                                                                                                          | IF                | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 19 | Towards standardization of the description and publication of nextâ€generation sequencing datasets of fungal communities. New Phytologist, 2011, 191, 314-318.                                                                   | 7.3               | 85            |
| 20 | Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas ( Pisum sativum ) caused by Aphanomyces euteiches. Mycorrhiza, 1998, 8, 169-174.                           | 2.8               | 81            |
| 21 | Molecular phylogenetics and delimitation of species in Cortinarius section Calochroi (Basidiomycota,) Tj ETQq1                                                                                                                   | 1 0,784314<br>2.7 | 4 rgBT /Overl |
| 22 | Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition.<br>Frontiers in Microbiology, 2017, 8, 1400.                                                                                       | 3.5               | 74            |
| 23 | Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash. Soil Biology and Biochemistry, 2017, 112, 153-164.                                                 | 8.8               | 73            |
| 24 | Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza, 2002, 12, 7-12.                                                                                           | 2.8               | 66            |
| 25 | Taxi drivers: the role of animals in transporting mycorrhizal fungi. Mycorrhiza, 2019, 29, 413-434.                                                                                                                              | 2.8               | 63            |
| 26 | <i>Rhizopogon</i> spore bank communities within and among California pine forests. Mycologia, 2003, 95, 603-613.                                                                                                                 | 1.9               | 61            |
| 27 | Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae. Biology and Fertility of Soils, 2000, 31, 361-365.                               | 4.3               | 56            |
| 28 | Risk assessment of replacing conventional P fertilizers with biomass ash: Residual effects on plant<br>yield, nutrition, cadmium accumulation and mycorrhizal status. Science of the Total Environment,<br>2017, 575, 1168-1176. | 8.0               | 55            |
| 29 | Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients?. Biological Conservation, 2019, 233, 201-212.                                                    | 4.1               | 55            |
| 30 | Molecular diversity of glomalean (arbuscular mycorrhizal) fungi determined as distinct Glomus<br>specific DNA sequences from roots of field grown peas fungi. Mycological Research, 2001, 105,<br>1027-1032.                     | 2.5               | 54            |
| 31 | Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Clomus mosseae and/or Aphanomyces euteiches in relation to bioprotection. New Phytologist, 1999, 142, 517-529.                         | 7.3               | 51            |
| 32 | Rhizopogon Spore Bank Communities within and among California Pine Forests. Mycologia, 2003, 95,<br>603.                                                                                                                         | 1.9               | 45            |
| 33 | Belowground ectomycorrhizal fungal communities respond to liming in three southern Swedish coniferous forest stands. Forest Ecology and Management, 2009, 257, 2217-2225.                                                        | 3.2               | 43            |
| 34 | Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes.<br>Fungal Ecology, 2010, 3, 205-214.                                                                                            | 1.6               | 42            |
| 35 | A three-gene phylogeny of the Mycena pura complex reveals 11 phylogenetic species and shows ITS to be unreliable for species identification. Fungal Biology, 2013, 117, 764-775.                                                 | 2.5               | 38            |
| 36 | The relative importance of the bacterial pathway and soil inorganic nitrogen increase across an extreme woodâ€ash application gradient. GCB Bioenergy, 2018, 10, 320-334.                                                        | 5.6               | 35            |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Organic amendments increase phylogenetic diversity of arbuscular mycorrhizal fungi in acid soil contaminated by trace elements. Mycorrhiza, 2016, 26, 575-585.                                                     | 2.8  | 32        |
| 38 | Ectomycorrhizal Fungal Communities and Their Functional Traits Mediate Plant–Soil Interactions in<br>Trace Element Contaminated Soils. Frontiers in Plant Science, 2018, 9, 1682.                                  | 3.6  | 31        |
| 39 | Enzymatic Activity of the Mycelium Compared with Oospore Development During Infection of Pea<br>Roots by Aphanomyces euteiches. Phytopathology, 1998, 88, 992-996.                                                 | 2.2  | 30        |
| 40 | Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiology Ecology, 2020, 96, .                       | 2.7  | 30        |
| 41 | The presence of the arbuscular mycorrhizal fungus Clomus intraradices influences enzymatic activities of the root pathogen Aphanomyces euteiches in pea roots. Mycorrhiza, 1997, 6, 487-491.                       | 2.8  | 27        |
| 42 | Extension of Plant Phenotypes by the Foliar Microbiome. Annual Review of Plant Biology, 2021, 72, 823-846.                                                                                                         | 18.7 | 27        |
| 43 | Differences in arbuscular mycorrhizal colonisation influence cadmium uptake in plants.<br>Environmental and Experimental Botany, 2019, 162, 223-229.                                                               | 4.2  | 26        |
| 44 | Soil fungal diversity and functionality are driven by plant species used in phytoremediation. Soil<br>Biology and Biochemistry, 2021, 153, 108102.                                                                 | 8.8  | 25        |
| 45 | Suppression of arbuscular mycorrhizal fungal activity in a diverse collection of non-cultivated soils.<br>FEMS Microbiology Ecology, 2019, 95, .                                                                   | 2.7  | 23        |
| 46 | Uniquity: A general metric for biotic uniqueness of sites. Biological Conservation, 2018, 225, 98-105.                                                                                                             | 4.1  | 22        |
| 47 | Population genomics of an outbreak of the potato late blight pathogen, <i>Phytophthora<br/>infestans</i> , reveals both clonality and high genotypic diversity. Molecular Plant Pathology, 2019, 20,<br>1134-1146. | 4.2  | 21        |
| 48 | A comparison between ITS phylogenetic relationships and morphological species recognition within Mycena sect. Calodontes in Northern Europe. Mycological Progress, 2010, 9, 395-405.                               | 1.4  | 19        |
| 49 | Cultivated and fallow fields harbor distinct communities of Basidiomycota. Fungal Ecology, 2014, 9, 43-51.                                                                                                         | 1.6  | 19        |
| 50 | Toward a functionâ€first framework to make soil microbial ecology predictive. Ecology, 2022, 103, e03594.                                                                                                          | 3.2  | 19        |
| 51 | Functional diversity of ectomycorrhizal fungal communities is reduced by trace element contamination. Soil Biology and Biochemistry, 2018, 121, 202-211.                                                           | 8.8  | 17        |
| 52 | Organic enrichment of sediments reduces arbuscular mycorrhizal fungi in oligotrophic lake plants.<br>Freshwater Biology, 2013, 58, 769-779.                                                                        | 2.4  | 16        |
| 53 | The complexity of wood ash fertilization disentangled: Effects on soil pH, nutrient status, plant growth and cadmium accumulation. Environmental and Experimental Botany, 2021, 185, 104424.                       | 4.2  | 15        |
| 54 | Application of wood ash leads to strong vertical gradients in soil pH changing prokaryotic community structure in forest top soil. Scientific Reports, 2021, 11, 742.                                              | 3.3  | 14        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Wood ash effects on growth and cadmium uptake in Deschampsia flexuosa (Wavy hair-grass).<br>Environmental Pollution, 2019, 249, 886-893.                                                                                     | 7.5 | 13        |
| 56 | Ameliorative Effects of Trichoderma harzianum and Rhizosphere Soil Microbes on Cadmium<br>Biosorption of Barley (Hordeum vulgare L.) in Cd-Polluted Soil. Journal of Soil Science and Plant<br>Nutrition, 2022, 22, 527-539. | 3.4 | 13        |
| 57 | Tropical forest type influences community assembly processes in arbuscular mycorrhizal fungi.<br>Journal of Biogeography, 2020, 47, 434-444.                                                                                 | 3.0 | 10        |
| 58 | Wood ash application in a managed Norway spruce plantation did not affect ectomycorrhizal diversity or N retention capacity. Fungal Ecology, 2019, 39, 1-11.                                                                 | 1.6 | 9         |
| 59 | Exploring evolutionary theories of plant defence investment using field populations of the deadly carrot. Annals of Botany, 2020, 125, 737-750.                                                                              | 2.9 | 7         |
| 60 | Bacteria Respond Stronger Than Fungi Across a Steep Wood Ash-Driven pH Gradient. Frontiers in<br>Forests and Global Change, 2021, 4, .                                                                                       | 2.3 | 7         |
| 61 | Ectomycorrhizal Fungal Responses to Forest Liming and Wood Ash Addition: Review and Meta-analysis.<br>, 2017, , 223-252.                                                                                                     |     | 4         |
| 62 | Mycorrhizal features and leaf traits covary at the community level during primary succession. Fungal Ecology, 2019, 40, 4-11.                                                                                                | 1.6 | 3         |
| 63 | Arbuscular mycorrhizal fungal communities of pristine rainforests and adjacent sugarcane fields recruit from different species pools. Soil Biology and Biochemistry, 2022, 167, 108585.                                      | 8.8 | 3         |