

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3366270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Patterning Configuration of Surface Hydrophilicity by Graphene Nanosheet towards the Inhibition of Ice Nucleation and Growth. Coatings, 2022, 12, 52.	2.6	1
2	Molecular design and preparation of an integrated CNT@EVA/PVDF composite film heater for effective deicing applications. Journal of Materials Science, 2022, 57, 1019-1035.	3.7	3
3	Performance optimization of shape memory epoxy polymers based on machine learning. Polymers for Advanced Technologies, 2022, 33, 1222-1232.	3.2	2
4	Rationally Regulating the Mechanical Performance of Porous PDMS Coatings for the Enhanced Icephobicity toward Large-Scale Ice. Langmuir, 2022, 38, 937-944.	3.5	12
5	Rational Analysis of Drag Reduction Variation Induced by Surface Microstructures Inspired by the Middle Section of Barchan Dunes at High Flow Velocity. Coatings, 2022, 12, 563.	2.6	1
6	Experimental and numerical research on flexural behavior of fiber metal laminate sandwich composite structures with 3D woven hollow integrated core. Journal of Sandwich Structures and Materials, 2022, 24, 1790-1807.	3.5	3
7	Role of Molecular Chains Arrangement and Surface Energy State in the Low Ice Adhesion on Poly(tetrafluoroethylene). Journal of Physical Chemistry Letters, 2022, 13, 6117-6122.	4.6	0
8	Influence of Varying Al/Ni Thicknesses Ratio on Reaction Behaviors and Mechanical Properties of Al/Ni Energetic Laminates. Metals and Materials International, 2021, 27, 4831-4840.	3.4	2
9	Fabrication, characterization and photoelectrochemical property of TiO2 nano-pillar films conveniently grown on flexible stainless steel substrates. Journal of Materials Science: Materials in Electronics, 2021, 32, 5094-5103.	2.2	0
10	Green Synthesis of Mechanical Robust Superhydrophobic CNT@PU Coatings with High Flexibility for Extensive Applications. Journal of Bionic Engineering, 2021, 18, 40-54.	5.0	4
11	Mechanical Equilibrium Dynamics Controlling Wetting State Transition at Low-Temperature Superhydrophobic Array-Microstructure Surfaces. Coatings, 2021, 11, 522.	2.6	14
12	Mechanical Behavior and Deformation Mechanism of Aluminum/Gf/Polyamide Laminates Under Dynamic Strain Aging. Applied Composite Materials, 2021, 28, 1547.	2.5	0
13	Residual stress variation and deformation of shot peened glass fiber reinforced composites/aluminum–lithium laminates under thermal shock and thermal fatigue. Polymer Composites, 2021, 42, 6523-6533.	4.6	3
14	Multi-type nanoparticles in superhydrophobic PU-based coatings towards self-cleaning, self-healing and mechanochemical durability. Progress in Organic Coatings, 2021, 159, 106451.	3.9	10
15	Low-Velocity Impact Resistance of Al/Gf/PP Laminates with Different Interface Performance. Polymers, 2021, 13, 4416.	4.5	3
16	Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124180.	4.7	73
17	Residual stresses and failure behavior of GFRP/Al-Li laminates after single and multiple shot's indentation under quasi-static. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105761.	7.6	9
18	Selective nucleation of ice crystals depending on the inclination angle of nanostructures. Physical Chemistry Chemical Physics, 2020, 22, 1168-1173.	2.8	6

Jie Tao

#	Article	IF	CITATIONS
19	Effect of plasma surface treatment of aluminum alloy sheet on the properties of Al/Gf/PP laminates. Applied Surface Science, 2020, 507, 145062.	6.1	26
20	Understanding the Solid–Ice Interface Mechanism on the Hydrophobic Nano-Pillar Structure Epoxy Surface for Reducing Ice Adhesion. Coatings, 2020, 10, 1043.	2.6	4
21	Spraying Preparation of Eco-Friendly Superhydrophobic Coatings with Ultralow Water Adhesion for Effective Anticorrosion and Antipollution. ACS Applied Materials & Interfaces, 2020, 12, 25484-25493.	8.0	61
22	Optimization of preparation technology on fibre metal laminates (FMLs) for high-temperature applications. International Journal of Lightweight Materials and Manufacture, 2020, 3, 317-327.	2.1	7
23	Composition optimization of a high-performance epoxy resin based on molecular dynamics and machine learning. Materials and Design, 2020, 194, 108932.	7.0	31
24	Effect of SiO ₂ nanoparticlesâ€decorated SCF on mechanical and tribological properties of cenosphere/SCF/PEEK composites. Journal of Applied Polymer Science, 2020, 137, 48749.	2.6	12
25	Microstructure Evolution and Compressive Properties of Multilayered Al/Ni Energetic Structural Materials under Different Strain Rates. Journal of Materials Engineering and Performance, 2020, 29, 506-514.	2.5	9
26	Droplet Directional Movement on the Homogeneously Structured Superhydrophobic Surface with the Gradient Non-Wettability. Langmuir, 2020, 36, 880-888.	3.5	19
27	Statistically understanding the roles of nanostructure features in interfacial ice nucleation for enhancing icing delay performance. Physical Chemistry Chemical Physics, 2019, 21, 19785-19794.	2.8	14
28	Effect of fiber surface functionalization on shear behavior at carbon fiber/epoxy interface through molecular dynamics analysis. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105611.	7.6	41
29	Multilayered Al/Ni energetic structural materials with high energy density and mechanical properties prepared by a facile approach of electrodeposition and hot pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 757, 23-31.	5.6	15
30	lcephobic materials: Fundamentals, performance evaluation, and applications. Progress in Materials Science, 2019, 103, 509-557.	32.8	258
31	Spraying Fabrication of Durable and Transparent Coatings for Anti-Icing Application: Dynamic Water Repellency, Icing Delay, and Ice Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 3590-3598.	8.0	157
32	Rationally Designed Nanostructure Features on Superhydrophobic Surfaces for Enhancing Self-Propelling Dynamics of Condensed Droplets. ACS Sustainable Chemistry and Engineering, 2019, 7, 2702-2708.	6.7	30
33	Rational Fabrication of Superhydrophobic Nanocone Surface for Dynamic Water Repellency and Anti-icing Potential. Journal of Bionic Engineering, 2019, 16, 27-37.	5.0	30
34	Influence of cenosphere on tribological properties of short carbon fiber reinforced PEEK composites. Journal of Applied Polymer Science, 2019, 136, 47245.	2.6	8
35	Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences. Composite Structures, 2018, 187, 354-363.	5.8	59
36	Bioinspired Fabrication of Hierarchical-Structured Superhydrophobic Surfaces To Understand Droplet Bouncing Dynamics for Enhancing Water Repellency. Journal of Physical Chemistry C, 2018, 122, 7312-7320.	3.1	29

Jie Tao

#	Article	IF	CITATIONS
37	Facile spraying fabrication of highly flexible and mechanically robust superhydrophobic F-SiO ₂ @PDMS coatings for self-cleaning and drag-reduction applications. New Journal of Chemistry, 2018, 42, 18208-18216.	2.8	58
38	Rational Design of the Nanostructure Features on Superhydrophobic Surfaces for Enhanced Dynamic Water Repellency. ACS Sustainable Chemistry and Engineering, 2018, 6, 9958-9965.	6.7	15
39	A combination structure of microblock and nanohair fabricated by chemical etching for excellent water repellency and icephobicity. Applied Surface Science, 2018, 455, 883-890.	6.1	48
40	Interlaminar failure behavior of GLARE laminates under double beam five-point-bending load. Composite Structures, 2018, 201, 79-85.	5.8	19
41	The combination of montmorillonite and silica in styrene–butadiene rubber/polybutadiene rubber tread compounds. Polymer Composites, 2017, 38, 918-926.	4.6	16
42	Fabrication of a superhydrophobic surface with a hierarchical nanoflake–micropit structure and its anti-icing properties. RSC Advances, 2017, 7, 9981-9988.	3.6	29
43	Petal shaped nanostructures planted on array micro-patterns for superhydrophobicity and anti-icing applications. Surface and Coatings Technology, 2017, 319, 286-293.	4.8	24
44	Bouncing dynamics of impact droplets on the convex superhydrophobic surfaces. Applied Physics Letters, 2017, 110, .	3.3	65
45	Facile fabrication of hierarchical structured superhydrophobic surface and its ultra dynamic water repellency. Chemical Engineering Journal, 2017, 313, 47-55.	12.7	36
46	Antiâ€lcing Performance of Superhydrophobic Texture Surfaces Depending on Reference Environments. Advanced Materials Interfaces, 2017, 4, 1700836.	3.7	90
47	Verifying the deicing capacity of superhydrophobic anti-icing surfaces based on wind and thermal fields. Surface and Coatings Technology, 2017, 309, 703-708.	4.8	39
48	Improvement of adhesion performance between aluminum alloy sheet and epoxy based on anodizing technique. International Journal of Adhesion and Adhesives, 2016, 70, 74-80.	2.9	105
49	Effect of adhesive quantity on failure behavior and mechanical properties of fiber metal laminates based on the aluminum–lithium alloy. Composite Structures, 2016, 152, 687-692.	5.8	50
50	Icephobic/anti-icing potential of superhydrophobic Ti6Al4V surfaces with hierarchical textures. RSC Advances, 2015, 5, 1666-1672.	3.6	84
51	Processing optimization of latexâ€compounded montmorillonite/styreneâ€butadiene rubber–polybutadiene rubber. Journal of Applied Polymer Science, 2015, 132, .	2.6	13
52	Superhydrophobic Ti ₆ Al ₄ V surfaces with regular array patterns for anti-icing applications. RSC Advances, 2015, 5, 32813-32818.	3.6	38
53	Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions. Soft Matter, 2015, 11, 3806-3811.	2.7	35
54	Reinforcement effects of aluminum–lithium alloy on the mechanical properties of novel fiber metal laminate. Composites Part B: Engineering, 2015, 82, 72-77.	12.0	47

Jie Tao

#	Article	IF	CITATIONS
55	Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces. ACS Applied Materials & Interfaces, 2015, 7, 20972-20978.	8.0	66
56	Anti-icing Potential of Superhydrophobic Ti6Al4V Surfaces: Ice Nucleation and Growth. Langmuir, 2015, 31, 10799-10806.	3.5	113
57	Preparation and photocatalytic antibacterial property of nitrogen doped TiO2 nanoparticles. Journal of Sol-Gel Science and Technology, 2013, 68, 213-218.	2.4	13
58	Fast Fabrication of Long TiO2 Nanotube Array with High Photoelectrochemical Property on Flexible Stainless Steel. Journal of Nanoscience and Nanotechnology, 2012, 12, 1852-1858.	0.9	1