Marina MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3365981/publications.pdf Version: 2024-02-01

ΜΑΦΙΝΑ ΜΑΦΤΔΑΙΕΖ

#	Article	IF	CITATIONS
1	ZnO Nanostructures for Drug Delivery and Theranostic Applications. Nanomaterials, 2018, 8, 268.	4.1	167
2	Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomaterialia, 2018, 65, 393-404.	8.3	161
3	Smart Mesoporous Nanomaterials for Antitumor Therapy. Nanomaterials, 2015, 5, 1906-1937.	4.1	79
4	Mesoporous silica nanoparticles grafted with a light-responsive protein shell for highly cytotoxic antitumoral therapy. Journal of Materials Chemistry B, 2015, 3, 5746-5752.	5.8	73
5	A novel visible light responsive nanosystem for cancer treatment. Nanoscale, 2017, 9, 15967-15973.	5.6	72
6	Mesoporous Silica Materials as Drug Delivery: "The Nightmare―of Bacterial Infection. Pharmaceutics, 2018, 10, 279.	4.5	70
7	Effect of Chiral Ligand Concentration and Binding Mode on Chiroptical Activity of CdSe/CdS Quantum Dots. ACS Nano, 2019, 13, 13560-13572.	14.6	65
8	Concanavalin A-targeted mesoporous silica nanoparticles for infection treatment. Acta Biomaterialia, 2019, 96, 547-556.	8.3	55
9	A novel zwitterionic bioceramic with dual antibacterial capability. Journal of Materials Chemistry B, 2014, 2, 5639-5651.	5.8	51
10	Selective topotecan delivery to cancer cells by targeted pH-sensitive mesoporous silica nanoparticles. RSC Advances, 2016, 6, 50923-50932.	3.6	46
11	Ligand-induced chirality and optical activity in semiconductor nanocrystals: theory and applications. Nanophotonics, 2020, 10, 797-824.	6.0	42
12	Amino-Functionalized Mesoporous Silica Nanoparticle-Encapsulated Octahedral Organoruthenium Complex as an Efficient Platform for Combatting Cancer. Inorganic Chemistry, 2020, 59, 10275-10284.	4.0	26
13	New cyclometallated precursors of unsubstituted N-phenylpyrazole [{Pd(phpz)(μ-X)}2] (X = AcO or OH) and study of their reactivity towards selected ligands. Dalton Transactions, 2011, 40, 156-168.	3.3	25
14	Bis(imidate)palladium(ii) complexes with labile ligands. Mimics of classical precursors?. Dalton Transactions, 2011, 40, 12676.	3.3	24
15	High resolution transmission electron microscopy: A key tool to understand drug release from mesoporous matrices. Microporous and Mesoporous Materials, 2016, 225, 399-410.	4.4	19
16	Advances in Laser Ablation Synthesized Silicon-Based Nanomaterials for the Prevention of Bacterial Infection. Nanomaterials, 2020, 10, 1443.	4.1	15
17	Axonal Injuries Cast Long Shadows: Long Term Glial Activation in Injured and Contralateral Retinas after Unilateral Axotomy. International Journal of Molecular Sciences, 2021, 22, 8517.	4.1	13
18	Development of Food Competence in Early Childhood Education. Education Sciences, 2022, 12, 64.	2.6	5

#	Article	IF	CITATIONS
19	Ly6c as a New Marker of Mouse Blood Vessels: Qualitative and Quantitative Analyses on Intact and Ischemic Retinas. International Journal of Molecular Sciences, 2022, 23, 19.	4.1	3
20	Enantioselective effect of cysteine functionalized mesoporous silica nanoparticles in U87 MG and GM08680 human cells and <i>Staphylococcus aureus</i> bacteria. Journal of Materials Chemistry B, 2021, 9, 3544-3553.	5.8	2
21	Preservice Chemistry Teachers' Epistemic Beliefs After a Student-Centred Approach Training Programme. Eurasia Journal of Mathematics, Science and Technology Education, 2021, 17, em2045.	1.3	1
22	Unidad didáctica sobre los cambios quÃmicos que intervienen en el efecto invernadero. Ãpice Revista De Educación CientÃfica, 2021, 5, 71-85.	0.3	1
23	Propuesta de un Breakoutedu de cinemática para el alumnado de primero de bachillerato. Ãpice Revista De Educación CientÃfica, 2022, 6, .	0.3	1