
Hilda E Witters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3365876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reproductive Toxicology, 2012, 33, 128-132.	1.3	491
2	Sex hormones originating from different livestock production systems: fate and potential disrupting activity in the environment. Analytica Chimica Acta, 2002, 473, 27-37.	2.6	286
3	Comparative study on the in vitro/in vivo estrogenic potencies of 17β-estradiol, estrone, 17α-ethynylestradiol and nonylphenol. Aquatic Toxicology, 2004, 66, 183-195.	1.9	241
4	Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reproductive Toxicology, 2009, 28, 308-320.	1.3	241
5	OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regulatory Toxicology and Pharmacology, 2014, 69, 496-511.	1.3	192
6	The allergic cascade: Review of the most important molecules in the asthmatic lung. Immunology Letters, 2007, 113, 6-18.	1.1	183
7	Locomotor activity in zebrafish embryos: A new method to assess developmental neurotoxicity. Neurotoxicology and Teratology, 2010, 32, 460-471.	1.2	171
8	Effects of ethynylestradiol on the reproductive physiology in zebrafish (<i>Danio rerio</i>): Time dependency and reversibility. Environmental Toxicology and Chemistry, 2002, 21, 767-775.	2.2	161
9	Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reproductive Toxicology, 2012, 33, 142-154.	1.3	161
10	Comparison of vitellogenin responses in zebrafish and rainbow trout following exposure to environmental estrogens. Ecotoxicology and Environmental Safety, 2003, 56, 271-281.	2.9	160
11	A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regulatory Toxicology and Pharmacology, 2013, 67, 506-530.	1.3	139
12	Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 306-352.	0.9	121
13	Effects of 17α-ethynylestradiol in a partial life-cycle test with zebrafish (Danio rerio): effects on growth, gonads and female reproductive success. Science of the Total Environment, 2003, 309, 127-137.	3.9	117
14	Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicology and Teratology, 2013, 37, 44-56.	1.2	111
15	Reproductive Effects of Ethynylestradiol and 4t-Octylphenol on the Zebrafish (Danio rerio). Archives of Environmental Contamination and Toxicology, 2001, 41, 458-467.	2.1	109
16	Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chemistry, 2017, 19, 2561-2570.	4.6	102
17	The ReProTect Feasibility Study, a novel comprehensive in vitro approach to detect reproductive toxicants. Reproductive Toxicology, 2010, 30, 200-218.	1.3	99
18	Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicology and Applied Pharmacology, 2018, 354, 3-6.	1.3	90

#	Article	IF	CITATIONS
19	Immunolocalization of Na + , K + -ATPase in the gill epithelium of rainbow trout, Oncorhynchus mykiss. Cell and Tissue Research, 1996, 283, 461-468.	1.5	82
20	A cell-based in vitro alternative to identify skin sensitizers by gene expression. Toxicology and Applied Pharmacology, 2008, 231, 103-111.	1.3	77
21	EFFECTS OF ETHYNYLESTRADIOL ON THE REPRODUCTIVE PHYSIOLOGY IN ZEBRAFISH (DANIO RERIO): TIME DEPENDENCY AND REVERSIBILITY. Environmental Toxicology and Chemistry, 2002, 21, 767.	2.2	76
22	Optimization and prevalidation of the in vitro ERα CALUX method to test estrogenic and antiestrogenic activity of compounds. Reproductive Toxicology, 2010, 30, 73-80.	1.3	74
23	Optimization and prevalidation of the in vitro AR CALUX method to test androgenic and antiandrogenic activity of compounds. Reproductive Toxicology, 2010, 30, 18-24.	1.3	74
24	Cell types involved in allergic asthma and their use in in vitro models to assess respiratory sensitization. Toxicology in Vitro, 2008, 22, 1419-1431.	1.1	66
25	Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform. Green Chemistry, 2018, 20, 1050-1058.	4.6	66
26	Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Molecular Immunology, 2007, 44, 3222-3233.	1.0	59
27	Detection of estrogenic activity in Flemish surface waters using an in vitro recombinant assay with yeast cells. Water Science and Technology, 2001, 43, 117-123.	1.2	58
28	Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part II: Zebrafish. Aquatic Toxicology, 2016, 173, 204-217.	1.9	56
29	The effect of humic substances on the toxicity of aluminium to adult rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Biology, 1990, 37, 43-53.	0.7	54
30	Repeatability and Reproducibility of the RTgill-W1 Cell Line Assay for Predicting Fish Acute Toxicity. Toxicological Sciences, 2019, 169, 353-364.	1.4	52
31	Chemical Speciation Dynamics and Toxicity Assessment in Aquatic Systems. Ecotoxicology and Environmental Safety, 1998, 41, 90-95.	2.9	48
32	Assessment of Chemical Skin-Sensitizing Potency by an In Vitro Assay Based on Human Dendritic Cells. Toxicological Sciences, 2010, 116, 122-129.	1.4	36
33	Screening of endocrine disrupting chemicals with MELN cells, an ER-transactivation assay combined with cytotoxicity assessment. Toxicology in Vitro, 2007, 21, 1262-1267.	1.1	35
34	Gene expression signatures in CD34+-progenitor-derived dendritic cells exposed to the chemical contact allergen nickel sulfate. Toxicology and Applied Pharmacology, 2006, 216, 131-149.	1.3	33
35	Expert opinion on toxicity profiling—report from a NORMAN expert group meeting. Integrated Environmental Assessment and Management, 2013, 9, 185-191.	1.6	31
36	Gene profiles of a human bronchial epithelial cell line after in vitro exposure to respiratory (non-)sensitizing chemicals: Identification of discriminating genetic markers and pathway analysis. Toxicology, 2009, 255, 151-159.	2.0	29

#	Article	IF	CITATIONS
37	PHYSICOCHEMICAL CHANGES OF ALUMINIUM IN MIXING ZONES: MORTALITY AND PHYSIOLOGICAL DISTURBANCES IN BROWN TROUT (SALMO TRUTTA L.). Environmental Toxicology and Chemistry, 1996, 15, 986.	2.2	29
38	An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. Aquatic Toxicology, 2018, 200, 1-12.	1.9	28
39	Regioselective synthesis, isomerisation, <i>in vitro</i> oestrogenic activity, and copolymerisation of bisguaiacol F (BGF) isomers. Green Chemistry, 2019, 21, 6622-6633.	4.6	28
40	Haematological disturbances and osmotic shifts in rainbow trout, Oncorhynchus mykiss (Walbaum) under acid and aluminium exposure. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1990, 160, 563-571.	0.7	27
41	The toxic mixing zone of neutral and acidic river water: Acute aluminium toxicity in brown trout (Salmo trutta L.). Water, Air, and Soil Pollution, 1995, 85, 341-346.	1.1	27
42	Phenotypic and biomarker evaluation of zebrafish larvae as an alternative model to predict mammalian hepatotoxicity. Journal of Applied Toxicology, 2016, 36, 1194-1206.	1.4	27
43	Interference of aluminium and pH on the Na-influx in an aquatic insectCorixa punctata (Illig.). Bulletin of Environmental Contamination and Toxicology, 1984, 32, 575-579.	1.3	26
44	Cytokine transcript profiling in CD34+-progenitor derived dendritic cells exposed to contact allergens and irritants. Toxicology Letters, 2005, 155, 187-194.	0.4	26
45	The assessment of estrogenic or anti-estrogenic activity of chemicals by the human stably transfected estrogen sensitive MELN cell line: Results of test performance and transferability. Reproductive Toxicology, 2010, 30, 60-72.	1.3	24
46	Functionality and specificity of gene markers for skin sensitization in dendritic cells. Toxicology Letters, 2011, 203, 106-110.	0.4	24
47	Gene expression profiles reveal distinct immunological responses of cobalt and cerium dioxide nanoparticles in two in vitro lung epithelial cell models. Toxicology Letters, 2014, 228, 157-169.	0.4	22
48	Laboratory studies on invertebrate survival and physiology in acid waters. , 1989, , 153-170.		21
49	Expression analysis of immune-related genes in CD34+ progenitor-derived dendritic cells after exposure to the chemical contact allergen DNCB. Toxicology in Vitro, 2005, 19, 909-913.	1.1	20
50	Molecular recognition of endocrine disruptors by synthetic and natural 17β-estradiol receptors: a comparative study. Analytical and Bioanalytical Chemistry, 2008, 390, 2081-2088.	1.9	20
51	Gene profiles of a human alveolar epithelial cell line after in vitro exposure to respiratory (non-)sensitizing chemicals: Identification of discriminating genetic markers and pathway analysis. Toxicology Letters, 2009, 185, 16-22.	0.4	20
52	Flow cytometric characterisation of antigen presenting dendritic cells after in vitro exposure to diesel exhaust particles. Toxicology in Vitro, 2005, 19, 903-907.	1.1	19
53	Gene expression profiling of in vitro cultured macrophages after exposure to the respiratory sensitizer hexamethylene diisocyanate. Toxicology in Vitro, 2008, 22, 1107-1114.	1.1	19
54	THP-1 monocytes but not macrophages as a potential alternative for CD34+ dendritic cells to identify chemical skin sensitizers. Toxicology and Applied Pharmacology, 2009, 236, 221-230.	1.3	19

#	Article	IF	CITATIONS
55	Gene markers in dendritic cells unravel pieces of the skin sensitization puzzle. Toxicology Letters, 2010, 196, 95-103.	0.4	19
56	A Microanalytical Study of the Gills of Aluminium-Exposed Rainbow Trout (<i>Salmo Gairdneri</i>). International Journal of Environmental Analytical Chemistry, 1988, 34, 227-237.	1.8	18
57	MUTZ-3-derived dendritic cells as an in vitro alternative model to CD34+ progenitor-derived dendritic cells for testing of chemical sensitizers. Toxicology in Vitro, 2009, 23, 1477-1481.	1.1	18
58	Screening for (anti)androgenic properties using a standard operation protocol based on the human stably transfected androgen sensitive PALM cell line. First steps towards validation. Reproductive Toxicology, 2010, 30, 9-17.	1.3	17
59	Gene profiles of THP-1 macrophages after in vitro exposure to respiratory (non-)sensitizing chemicals: Identification of discriminating genetic markers and pathway analysis. Toxicology in Vitro, 2009, 23, 1151-1162.	1.1	14
60	COMPARISON OF DIFFERENT ANDROGEN BIOASSAYS IN THE SCREENING FOR ENVIRONMENTAL (ANTI)ANDROGENIC ACTIVITY. Environmental Toxicology and Chemistry, 2005, 24, 2646.	2.2	13
61	Determination of Estrogen Activity in River Waters and Wastewater in Luxembourg by Chemical Analysis and the Yeast Estrogen Screen Assay. Environment and Pollution, 2012, 1, .	0.2	13
62	Inter-laboratory comparison of a yeast bioassay for the determination of estrogenic activity in biological samples. Analytica Chimica Acta, 2009, 637, 265-272.	2.6	12
63	Toxicity of Cadmium-Contaminated Clay to the Zebrafish Danio rerio. Archives of Environmental Contamination and Toxicology, 2000, 38, 191-196.	2.1	11
64	Adaptation of the Systematic Review Framework to the Assessment of Toxicological Test Methods: Challenges and Lessons Learned With the Zebrafish Embryotoxicity Test. Toxicological Sciences, 2019, 171, 56-68.	1.4	9
65	A Systematic Review to Compare Chemical Hazard Predictions of the Zebrafish Embryotoxicity Test With Mammalian Prenatal Developmental Toxicity. Toxicological Sciences, 2021, 183, 14-35.	1.4	7
66	Xenopus laevis as a Bioindicator of Endocrine Disruptors in the Region of Central Chile. Archives of Environmental Contamination and Toxicology, 2019, 77, 390-408.	2.1	6
67	Branchial and renal ion fluxes and transepithelial electrical potential differences in rainbow trout, Oncorhynchus mykiss: effects of aluminium at low pH. Environmental Biology of Fishes, 1992, 34, 197-206.	0.4	5
68	Blueprint for the Development and Sustainability of National Nanosafety Centers. NanoEthics, 2020, 14, 169-183.	0.5	5
69	Blueprint for a self-sustained European Centre for service provision in safe and sustainable innovation for nanotechnology. NanoImpact, 2021, 23, 100337.	2.4	5
70	ELIXIR and Toxicology: a community in development. F1000Research, 0, 10, 1129.	0.8	3
71	Ecotoxic impact of suspended solids collected from polluted surface waters. Journal of Soils and Sediments, 2001, 1, 223-233.	1.5	1
72	Cell-based data to predict the toxicity of chemicals to fish. Commentary on the manuscript by Rodrigues etÂal., 2019. Cell-based assays seem not to accurately predict fish short-term toxicity of pesticides. Environmental Pollution 252:476–482. Environmental Pollution, 2019, 254, 113060.	3.7	1

#	Article	IF	CITATIONS
73	Alternative air–liquid interface method for inhalation toxicity testing of a petroleum-derived substance. MethodsX, 2020, 7, 101088.	0.7	1
74	Sustainable future technologies: A concept for risk assessment applied to chemical looping combustion installations. Chemical Engineering Research and Design, 2021, 147, 834-845.	2.7	1
75	Minimum reporting standards based on a comprehensive review of the zebrafish embryo teratogenicity assay. Regulatory Toxicology and Pharmacology, 2021, 127, 105054.	1.3	1
76	Characterisation of two dendritic cell models for in vitro sensitization testing. Toxicology Letters, 2006, 164, S214.	0.4	0
77	Cell surface molecules in human CD34+ progenitor-derived dendritic cells as markers for in vitro sensitization. Toxicology Letters, 2007, 172, S88.	0.4	0
78	Pathway analysis of dendritic cell markers for skin sensitization. Toxicology Letters, 2008, 180, S109-S110.	0.4	0
79	Cell-based in vitro alternatives to predict the contact and respiratory sensitizing potential of chemicals. Toxicology Letters, 2009, 189, S26.	0.4	0
80	Impact of engineered nanoparticles on immune-related genes and processes in human alveolar epithelial cells. Toxicology Letters, 2009, 189, S186.	0.4	0
81	Novel biomarkers in dendritic cells contribute in understanding the skin sensitization process. Toxicology Letters, 2010, 196, S136.	0.4	Ο
82	Locomotoractivity in zebrafish embryo and larva: alternative assays to evaluate the developmental neurotoxic potential of chemicals and drugs. Toxicology Letters, 2013, 221, S44.	0.4	0
83	Development of an alternative testing strategy for the fish early life stage test for predicting chronic toxicity. Toxicology Letters, 2013, 221, S104.	0.4	0
84	Systematic review on methods for developmental neurotoxicity evaluation based on an EFSA Report. Toxicology Letters, 2016, 258, S16.	0.4	0
85	Cadmium Accumulation in Cress as a Measure for Bioavailable Pore Water Concentration. Soil & Environment, 1995, , 429-430.	0.0	0
86	VITOSENSâ,,¢. , 2017, , 347-359.		0