
Clemens Jauch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3364943/publications.pdf Version: 2024-02-01

CLEMENS MUCH

#	Article	IF	CITATIONS
1	Potential of Onshore Wind Turbine Inertia in Decarbonising the Future Irish Energy System. Applied Sciences (Switzerland), 2022, 12, 2984.	2.5	3
2	Application of a New Dispatch Methodology to Identify the Influence of Inertia Supplying Wind Turbines on Day-Ahead Market Sales Volumes. Energies, 2021, 14, 1255.	3.1	1
3	Grid Support with Wind Turbines: The Case of the 2019 Blackout in Flensburg. Energies, 2021, 14, 1697.	3.1	13
4	Grid Services and Stress Reduction with a Flywheel in the Rotor of a Wind Turbine. Energies, 2021, 14, 2556.	3.1	4
5	Software-in-the-Loop Simulation of a Gas-Engine for the Design and Testing of a Wind Turbine Emulator. Energies, 2021, 14, 2898.	3.1	3
6	Influence of Continuous Provision of Synthetic Inertia on the Mechanical Loads of a Wind Turbine. Energies, 2021, 14, 5185.	3.1	4
7	Development of a Flexible Lightweight Hydraulic-Pneumatic Flywheel System for Wind Turbine Rotors. Fluids, 2020, 5, 162.	1.7	5
8	Determining the Load Inertia Contribution from Different Power Consumer Groups. Energies, 2020, 13, 1588.	3.1	19
9	Hydraulic-pneumatic flywheel configurations for controlling the inertia of a wind turbine rotor. Wind Engineering, 2019, 43, 114-132.	1.9	6
10	Investigation of Laminar–Turbulent Transition on a Rotating Wind-Turbine Blade of Multimegawatt Class with Thermography and Microphone Array. Energies, 2019, 12, 2102.	3.1	23
11	Simultaneous Inertia Contribution and Optimal Grid Utilization with Wind Turbines. Energies, 2019, 12, 3013.	3.1	8
12	Identifying electromagnetic illusions in grid frequency measurements for synthetic inertia provision. , 2019, , .		0
13	Load analysis of hydraulicâ€pneumatic flywheel configurations integrated in a wind turbine rotor. Wind Energy, 2019, 22, 1190-1202.	4.2	3
14	Continuous provision of synthetic inertia with wind turbines: implications for the wind turbine and for the grid. IET Renewable Power Generation, 2019, 13, 668-675.	3.1	37
15	Large Scale Test Bench for Emulating Grid Connected Wind Turbines of Different Sizes. , 2019, , .		1
16	Increased Wind Energy Yield and Grid Utilisation with Continuous Feed-In Management. Energies, 2017, 10, 870.	3.1	7
17	Design of a System Substituting Today's Inherent Inertia in the European Continental Synchronous Area. Energies, 2016, 9, 582.	3.1	46
18	Controls of a flywheel in a wind turbine rotor. Wind Engineering, 2016, 40, 173-185.	1.9	9

CLEMENS JAUCH

#	Article	IF	CITATIONS
19	Hydraulic–pneumatic flywheel system in a wind turbine rotor for inertia control. IET Renewable Power Generation, 2016, 10, 33-41.	3.1	28
20	A flywheel in a wind turbine rotor for inertia control. Wind Energy, 2015, 18, 1645-1656.	4.2	19
21	A Simple Wind Model for Fast Wind Farm Simulations. Wind Engineering, 2014, 38, 523-534.	1.9	0
22	Development of a Contactless Pitch Angle Measurement System. Wind Engineering, 2014, 38, 621-632.	1.9	2
23	Simulation of the impact of wind power on the transient fault behavior of the Nordic power system. Electric Power Systems Research, 2007, 77, 135-144.	3.6	66
24	A fuzzy logic pitch angle controller for power system stabilization. Wind Energy, 2007, 10, 19-30.	4.2	42
25	Transient and dynamic control of a variable speed wind turbine with synchronous generator. Wind Energy, 2007, 10, 247-269.	4.2	29
26	Design of a wind turbine pitch angle controller for power system stabilisation. Renewable Energy, 2007, 32, 2334-2349.	8.9	50
27	The Relevance of the Dynamic Stall Effect for Transient Fault Operations of Active-Stall Wind Turbines. Wind Engineering, 2005, 29, 353-364.	1.9	4
28	Simulation Model of a Transient Fault Controller for an Active-Stall Wind Turbine. Wind Engineering, 2005, 29, 33-47.	1.9	9
29	International comparison of requirements for connection of wind turbines to power systems. Wind Energy, 2005, 8, 295-306.	4.2	192
30	Simulation Model of a Wind Turbine Pitch Controller for Grid Frequency Stabilisation. Wind Engineering, 2005, 29, 377-387.	1.9	1
31	Simulation Model of an Active-Stall Fixed-Speed Wind Turbine Controller. Wind Engineering, 2004, 28, 177-195.	1.9	19