
## W Brian Haynes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3364748/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Soot formation. Progress in Energy and Combustion Science, 1981, 7, 229-273.                                                                              | 31.2 | 969       |
| 2  | On the CFD modelling of Taylor flow in microchannels. Chemical Engineering Science, 2009, 64, 2941-2950.                                                  | 3.8  | 303       |
| 3  | Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages. International Journal of Heat and Mass Transfer, 2000, 43, 3347-3358.             | 4.8  | 277       |
| 4  | Pilot plant testing of continuous hydrothermal liquefaction of microalgae. Algal Research, 2013, 2,<br>268-277.                                           | 4.6  | 226       |
| 5  | Effect of CO2 and steam gasification reactions on the oxy-combustion of pulverized coal char.<br>Combustion and Flame, 2012, 159, 3437-3447.              | 5.2  | 209       |
| 6  | Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresource Technology, 2014, 155, 334-341. | 9.6  | 200       |
| 7  | Effect of CO2 gasification reaction on oxy-combustion of pulverized coal char. Proceedings of the Combustion Institute, 2011, 33, 1699-1706.              | 3.9  | 147       |
| 8  | Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Research, 2015, 8, 15-22.                                                          | 4.6  | 140       |
| 9  | Kinetic and Thermodynamic Sensitivity Analysis of the NO-Sensitised Oxidation of Methane.<br>Combustion Science and Technology, 1996, 115, 259-296.       | 2.3  | 135       |
| 10 | Local condensation heat transfer rates in fine passages. International Journal of Heat and Mass<br>Transfer, 2003, 46, 4453-4466.                         | 4.8  | 134       |
| 11 | A CFD based combustion model of an entrained flow biomass gasifier. Applied Mathematical Modelling, 2000, 24, 165-182.                                    | 4.2  | 131       |
| 12 | Taylor Flow in Microchannels: A Review of Experimental and Computational Work. Journal of<br>Computational Multiphase Flows, 2010, 2, 1-31.               | 0.8  | 128       |
| 13 | The oxidation of hydrogen cyanide in fuel-rich flames. Combustion and Flame, 1977, 28, 113-121.                                                           | 5.2  | 124       |
| 14 | A Review of Terminology Used to Describe Soot Formation and Evolution under Combustion and Pyrolytic Conditions. ACS Nano, 2020, 14, 12470-12490.         | 14.6 | 122       |
| 15 | CFD modelling of flow and heat transfer in the Taylor flow regime. Chemical Engineering Science, 2010, 65, 2094-2107.                                     | 3.8  | 119       |
| 16 | Reactions of ammonia and nitric oxide in the burnt gases of fuel-rich hydrocarbon-air flames.<br>Combustion and Flame, 1977, 28, 81-91.                   | 5.2  | 118       |
| 17 | Factors governing the surface enrichment of fly ash in volatile trace species. Journal of Colloid and<br>Interface Science, 1982, 87, 266-278.            | 9.4  | 109       |
| 18 | CFD approaches for the simulation of hydrodynamics and heat transfer in Taylor flow. Chemical<br>Engineering Science, 2011, 66, 5575-5584.                | 3.8  | 106       |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Catalytic Chemistry of Nitromethane over Co-ZSM5 and Other Catalysts in Connection with the Methane-NOxSCR Reaction. Journal of Catalysis, 1998, 176, 329-343.         | 6.2 | 101       |
| 20 | Validation of a CFD model of Taylor flow hydrodynamics and heat transfer. Chemical Engineering Science, 2012, 69, 541-552.                                                 | 3.8 | 101       |
| 21 | Vaporization and condensation of mineral matter during pulverized coal combustion. Proceedings of the Combustion Institute, 1981, 18, 1267-1274.                           | 0.3 | 100       |
| 22 | Laminar flow and heat transfer in a periodic serpentine channel with semi-circular cross-section.<br>International Journal of Heat and Mass Transfer, 2006, 49, 2912-2923. | 4.8 | 94        |
| 23 | Subcooled flow boiling heat transfer in narrow passages. International Journal of Heat and Mass<br>Transfer, 2003, 46, 3673-3682.                                          | 4.8 | 89        |
| 24 | Experimental and kinetic modelling study of H2S oxidation. Proceedings of the Combustion Institute, 2013, 34, 625-632.                                                     | 3.9 | 89        |
| 25 | Density functional study of the chemisorption of O2 on the zig-zag surface of graphite. Combustion and Flame, 2005, 143, 629-643.                                          | 5.2 | 87        |
| 26 | Hydrodynamics of liquid–liquid Taylor flow in microchannels. Chemical Engineering Science, 2013, 92,<br>180-189.                                                           | 3.8 | 86        |
| 27 | A turnover model for carbon reactivity I. development. Combustion and Flame, 2001, 126, 1421-1432.                                                                         | 5.2 | 80        |
| 28 | Periodic density functional study of Co3O4 surfaces. Chemical Physics Letters, 2011, 502, 63-68.                                                                           | 2.6 | 72        |
| 29 | Impact of tortuous geometry on laminar flow heat transfer in microchannels. International Journal of Heat and Mass Transfer, 2015, 83, 382-398.                            | 4.8 | 72        |
| 30 | On the origin of power-law kinetics in carbon oxidation. Proceedings of the Combustion Institute, 2005, 30, 2161-2168.                                                     | 3.9 | 65        |
| 31 | The Surface Growth Phenomenon in Soot Formation. Zeitschrift Fur Physikalische Chemie, 1982, 133, 201-213.                                                                 | 2.8 | 62        |
| 32 | Density functional study of the chemisorption of O2 on the armchair surface of graphite.<br>Proceedings of the Combustion Institute, 2005, 30, 2141-2149.                  | 3.9 | 62        |
| 33 | The effect of metal additives on the formation of soot in premixed flames. Proceedings of the Combustion Institute, 1979, 17, 1365-1374.                                   | 0.3 | 61        |
| 34 | Laminar Flow and Heat Transfer in a Periodic Serpentine Channel. Chemical Engineering and Technology, 2005, 28, 353-361.                                                   | 1.5 | 61        |
| 35 | Low-Reynolds number heat transfer enhancement in sinusoidal channels. Chemical Engineering<br>Science, 2007, 62, 694-702.                                                  | 3.8 | 61        |
| 36 | An experimental investigation of the mutually sensitised oxidation of nitric oxide and n-butane.<br>Proceedings of the Combustion Institute, 1992, 24, 899-907.            | 0.3 | 60        |

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | From macroalgae to liquid fuel via waste-water remediation, hydrothermal upgrading, carbon dioxide<br>hydrogenation and hydrotreating. Energy and Environmental Science, 2016, 9, 1828-1840. | 30.8 | 59        |
| 38 | Density functional study of the reaction of O2 with a single site on the zigzag edge of graphene.<br>Proceedings of the Combustion Institute, 2011, 33, 1851-1858.                           | 3.9  | 58        |
| 39 | Identification of a source of argon-ion-laser excited fluorescence in sooting flames. Combustion and Flame, 1981, 43, 211-214.                                                               | 5.2  | 57        |
| 40 | Density Functional Study of the Reaction of Carbon Surface Oxides:Â The Behavior of Ketones. Journal of Physical Chemistry A, 2005, 109, 3438-3447.                                          | 2.5  | 57        |
| 41 | Heat transfer in well-characterised Taylor flow. Chemical Engineering Science, 2010, 65, 6379-6388.                                                                                          | 3.8  | 55        |
| 42 | Continuous hydrothermal liquefaction of macroalgae in the presence of organic co-solvents. Algal<br>Research, 2016, 17, 185-195.                                                             | 4.6  | 53        |
| 43 | Reaction of Hydrogen with Ag(111):  Binding States, Minimum Energy Paths, and Kinetics. Journal of<br>Physical Chemistry B, 2006, 110, 17145-17154.                                          | 2.6  | 51        |
| 44 | Laminar flow and heat transfer in a periodic trapezoidal channel with semi-circular cross-section.<br>International Journal of Heat and Mass Transfer, 2007, 50, 3471-3480.                  | 4.8  | 51        |
| 45 | Thermohydraulic performance of a periodic trapezoidal channel with a triangular cross-section.<br>International Journal of Heat and Mass Transfer, 2008, 51, 2925-2929.                      | 4.8  | 51        |
| 46 | Pathways for conversion of char nitrogen to nitric oxide during pulverized coal combustion.<br>Combustion and Flame, 2009, 156, 574-587.                                                     | 5.2  | 50        |
| 47 | Taylor flow heat transfer in microchannels—Unification of liquid–liquid and gas–liquid results.<br>Chemical Engineering Science, 2015, 138, 140-152.                                         | 3.8  | 50        |
| 48 | The influence of gaseous additives on the formation of soot in premixed flames. Proceedings of the Combustion Institute, 1982, 19, 1379-1385.                                                | 0.3  | 49        |
| 49 | Kinetics and modeling of the H2?O2?NOx system. International Journal of Chemical Kinetics, 1995, 27, 1165-1178.                                                                              | 1.6  | 47        |
| 50 | Evaluation of thermal desorption spectra for heterogeneous surfaces: application to carbon surface oxides. Surface Science, 1993, 297, 312-326.                                              | 1.9  | 46        |
| 51 | An experimental study of gas–liquid flow in a narrow conduit. International Journal of Heat and<br>Mass Transfer, 2000, 43, 2313-2324.                                                       | 4.8  | 46        |
| 52 | Laminar heat transfer simulations for periodic zigzag semicircular channels: Chaotic advection and geometric effects. International Journal of Heat and Mass Transfer, 2013, 62, 391-401.    | 4.8  | 46        |
| 53 | Density Functional Study of the Chemisorption of O2 Across Two Rings of the Armchair Surface of<br>Graphite. Journal of Physical Chemistry C, 2007, 111, 5465-5473.                          | 3.1  | 45        |
| 54 | Film and slug behaviour in intermittent slug–annular microchannel flows. Chemical Engineering<br>Science, 2010, 65, 5344-5355.                                                               | 3.8  | 44        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of Flow Characteristics on Taylor Flow Heat Transfer. Industrial & Engineering Chemistry<br>Research, 2012, 51, 2010-2020.                                                         | 3.7 | 44        |
| 56 | Formate species in the low-temperature oxidation of dimethyl ether. Chemosphere, 2001, 42, 583-589.                                                                                       | 8.2 | 43        |
| 57 | Chaotic advection in steady laminar heat transfer simulations: Periodic zigzag channels with square cross-sections. International Journal of Heat and Mass Transfer, 2013, 57, 274-284.   | 4.8 | 43        |
| 58 | Transient laminar heat transfer simulations in periodic zigzag channels. International Journal of Heat<br>and Mass Transfer, 2014, 71, 758-768.                                           | 4.8 | 43        |
| 59 | Hydrocarbon-NO interactions at low temperatures—1.Conversion of NO to NO2 promoted by propane<br>and the formation of HNCO. Proceedings of the Combustion Institute, 1994, 25, 1003-1010. | 0.3 | 41        |
| 60 | Pre- and post-harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction. Algal Research, 2014, 6, 22-31.                                          | 4.6 | 41        |
| 61 | Implementation of a height function method to alleviate spurious currents in CFD modelling of annular flow in microchannels. Applied Mathematical Modelling, 2015, 39, 4665-4686.         | 4.2 | 40        |
| 62 | Thermohydraulics of square-section microchannels following a serpentine path. Microfluidics and Nanofluidics, 2006, 2, 195-204.                                                           | 2.2 | 38        |
| 63 | An Exploratory Flow Reactor Study of H <sub>2</sub> S Oxidation at 30–100 Bar. International Journal of Chemical Kinetics, 2017, 49, 37-52.                                               | 1.6 | 38        |
| 64 | Rate coefficient of H+O2+M→HO2+M (M=H2O, N2, Ar, CO2). Proceedings of the Combustion Institute, 1998, 27, 185-191.                                                                        | 0.3 | 36        |
| 65 | Catalytic combustion of soot on metal oxides and their supported metal chlorides. Catalysis<br>Communications, 2003, 4, 591-596.                                                          | 3.3 | 36        |
| 66 | Mineral Carbonation as the Core of an Industrial Symbiosis for Energyâ€Intensive Minerals Conversion.<br>Journal of Industrial Ecology, 2012, 16, 94-104.                                 | 5.5 | 36        |
| 67 | Gas-Phase Interaction of H2S with O2:  A Kinetic and Quantum Chemistry Study of the Potential Energy<br>Surface. Journal of Physical Chemistry A, 2005, 109, 1057-1062.                   | 2.5 | 35        |
| 68 | Oxygen chemisorption on carbon. Proceedings of the Combustion Institute, 1992, 24, 1199-1206.                                                                                             | 0.3 | 34        |
| 69 | Cobra probe measurements of mean velocities, Reynolds stresses and higher-order velocity correlations in pipe flow. Experimental Thermal and Fluid Science, 2000, 21, 206-217.            | 2.7 | 34        |
| 70 | Kinetic and thermodynamic analysis of the fate of sulphur compounds in gasification products. Fuel, 2004, 83, 2133-2138.                                                                  | 6.4 | 34        |
| 71 | Soot surface growth at active sites. Combustion and Flame, 1991, 85, 523-525.                                                                                                             | 5.2 | 32        |
| 72 | Interactions of gaseous no with char during the low-temperature oxidation of coal chars.<br>Proceedings of the Combustion Institute, 2000, 28, 2171-2179.                                 | 3.9 | 32        |

| #  | Article                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Scaleable, microstructured plant for steam reforming of methane. Chemical Engineering Journal, 2008, 135, S9-S16.                                                    | 12.7 | 32        |
| 74 | The behavior of nitrogen species in fuel rich hydrocarbon flames. Proceedings of the Combustion Institute, 1975, 15, 1103-1112.                                      | 0.3  | 31        |
| 75 | The fate of char-nitrogen in low-temperature oxidation. Proceedings of the Combustion Institute, 1998, 27, 3069-3075.                                                | 0.3  | 31        |
| 76 | Site Isolation Leads to Stable Photocatalytic Reduction of CO <sub>2</sub> over a Rheniumâ€Based<br>Catalyst. Chemistry - A European Journal, 2015, 21, 18576-18579. | 3.3  | 30        |
| 77 | Chemical Engineering Curriculum Renewal. Education for Chemical Engineers, 2006, 1, 116-125.                                                                         | 4.8  | 29        |
| 78 | Methanol and Methoxide Decomposition on Silver. Journal of Physical Chemistry C, 2007, 111, 9867-9876.                                                               | 3.1  | 29        |
| 79 | Local Site Selectivity and Conformational Structures in the Glycosidic Bond Scission of Cellobiose.<br>Journal of Physical Chemistry B, 2011, 115, 10682-10691.      | 2.6  | 29        |
| 80 | On the importance of upstream compressibility in microchannel boiling heat transfer. International<br>Journal of Heat and Mass Transfer, 2013, 58, 503-512.          | 4.8  | 29        |
| 81 | Insight into oxygen stability and vacancy formation on Co3O4 model slabs. Computational Materials<br>Science, 2013, 72, 15-25.                                       | 3.0  | 29        |
| 82 | DFT Analysis of the Reaction Paths of Formaldehyde Decomposition on Silver. Journal of Physical<br>Chemistry A, 2009, 113, 8125-8131.                                | 2.5  | 28        |
| 83 | Gravitational effect on Taylor flow in horizontal microchannels. Chemical Engineering Science, 2012, 69, 553-564.                                                    | 3.8  | 28        |
| 84 | C1/C2 chemistry in fuel-rich post-flame gases: Detailed kinetic modelling. Proceedings of the Combustion Institute, 1994, 25, 909-917.                               | 0.3  | 26        |
| 85 | Oxyreactivity of carbon surface oxides. Proceedings of the Combustion Institute, 2000, 28, 2197-2203.                                                                | 3.9  | 26        |
| 86 | The mutually sensitied oxidation of ethylene and NO: An experimental and kinetic modeling study.<br>Proceedings of the Combustion Institute, 1996, 26, 589-596.      | 0.3  | 25        |
| 87 | Title is missing!. Catalysis Letters, 1997, 46, 207-212.                                                                                                             | 2.6  | 24        |
| 88 | Computational fluid dynamics modelling of an entrained flow biomass gasifier. Applied Mathematical<br>Modelling, 1998, 22, 747-757.                                  | 4.2  | 24        |
| 89 | Simulation of the ignition of lean methane mixtures using CFD modelling and a reduced chemistry mechanism. Applied Mathematical Modelling, 2000, 24, 689-696.        | 4.2  | 24        |
| 90 | Kinetic studies of graphon and coal-char reaction with NO and O2: direct non-linear regression from<br>TG curves. Fuel Processing Technology, 2005, 86, 651-660.     | 7.2  | 24        |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Formation of metastable oxide complexes during the oxidation of carbons at low temperatures.<br>Proceedings of the Combustion Institute, 1991, 23, 1191-1197.                              | 0.3 | 23        |
| 92  | Role of the Direct Reaction H2S + SO2in the Homogeneous Claus Reaction. Journal of Physical Chemistry A, 2005, 109, 8180-8186.                                                             | 2.5 | 23        |
| 93  | Numerical simulation of annular flow hydrodynamics in microchannels. Computers and Fluids, 2016, 133, 90-102.                                                                              | 2.5 | 23        |
| 94  | Interaction of carbon monoxide with carbon and carbon surface oxides. Energy & Fuels, 1992, 6, 154-159.                                                                                    | 5.1 | 22        |
| 95  | Effect of boundary layer reactions on the conversion of CHAR-N to NO, N 2 O, and HCN at fluidized-bed combustion conditions. Combustion Science and Technology, 2002, 174, 43-71.          | 2.3 | 22        |
| 96  | Combustion research for chemical processing. Proceedings of the Combustion Institute, 2019, 37, 1-32.                                                                                      | 3.9 | 21        |
| 97  | Numerical assessment of Tognotti determination of CO2/CO production ratio during char oxidation.<br>Combustion and Flame, 2013, 160, 1827-1834.                                            | 5.2 | 20        |
| 98  | CFD simulation of Taylor flow: Should the liquid film be captured or not?. Chemical Engineering<br>Science, 2017, 167, 334-335.                                                            | 3.8 | 20        |
| 99  | Quantum chemical and RRKM calculations of reactions in the H/S/O system. Proceedings of the Combustion Institute, 2007, 31, 257-265.                                                       | 3.9 | 19        |
| 100 | Theoretical Study of Hydrogen Abstraction and Sulfur Insertion in the Reaction H <sub>2</sub> S + S.<br>Journal of Physical Chemistry A, 2008, 112, 3239-3247.                             | 2.5 | 19        |
| 101 | Conformational and Thermodynamic Properties of Gaseous Levulinic Acid. Journal of Physical Chemistry A, 2010, 114, 12323-12329.                                                            | 2.5 | 19        |
| 102 | The role of oxygen during the catalytic oxidation of ammonia on Co 3 O 4 (1 0 0). Applied Surface Science, 2014, 316, 355-365.                                                             | 6.1 | 18        |
| 103 | <i>In situ</i> synchrotron XRD analysis of the kinetics of spodumene phase transitions. Physical<br>Chemistry Chemical Physics, 2018, 20, 10753-10761.                                     | 2.8 | 18        |
| 104 | Laminar Flow and Heat Transfer in Periodic Serpentine Mini-Channels. Journal of Enhanced Heat<br>Transfer, 2006, 13, 309-320.                                                              | 1.1 | 18        |
| 105 | Demonstration Plant for Distributed Production of Hydrogen from Steam Reforming of Methane.<br>Chemical Engineering Research and Design, 2005, 83, 619-625.                                | 5.6 | 17        |
| 106 | Acid-Catalyzed Ring Opening of Furan in Aqueous Solution. Energy & Fuels, 2018, 32, 4139-4148.                                                                                             | 5.1 | 17        |
| 107 | The effect of alkali metals on a laminar ethylene diffusion flame. Combustion and Flame, 1993, 92, 266-273.                                                                                | 5.2 | 16        |
| 108 | The Formation of Methyl Isocyanate during the Reaction of Nitroethane over Cu-MFI under<br>Hydrocarbon-Selective Catalytic Reduction Conditions. Journal of Catalysis, 2001, 203, 487-494. | 6.2 | 16        |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Computational Study of the Reaction SH + O <sub>2</sub> . Journal of Physical Chemistry A, 2009, 113, 2975-2981.                                                                                         | 2.5  | 16        |
| 110 | Hydrogen from Formic Acid via Its Selective Disproportionation over Nanodomain-Modified Zeolites.<br>ACS Catalysis, 2015, 5, 4353-4362.                                                                  | 11.2 | 16        |
| 111 | The effect of bulk gas diffusivity on apparent pulverized coal char combustion kinetics. Proceedings of the Combustion Institute, 2019, 37, 3071-3079.                                                   | 3.9  | 16        |
| 112 | An experimental and numerical study of surface chemical interactions in the combustion of propylene over platinum. Combustion and Flame, 2013, 160, 473-485.                                             | 5.2  | 15        |
| 113 | The catalytic oxidation of NH3 on Co3O4(110): A theoretical study. Proceedings of the Combustion Institute, 2017, 36, 4365-4373.                                                                         | 3.9  | 15        |
| 114 | Theoretical Study of Reactions in the Multiple Well H <sub>2</sub> /S <sub>2</sub> System. Journal of Physical Chemistry A, 2009, 113, 8299-8306.                                                        | 2.5  | 14        |
| 115 | The Formation of Nitric Oxide in Fuel-Rich Flames. Combustion Science and Technology, 1973, 8, 159-164.                                                                                                  | 2.3  | 13        |
| 116 | Kinetic and modeling studies of the reaction S+H2S. Proceedings of the Combustion Institute, 2011, 33, 459-465.                                                                                          | 3.9  | 13        |
| 117 | Formation of N2 and N2O in industrial combustion of ammonia over platinum. Proceedings of the Combustion Institute, 2015, 35, 2215-2222.                                                                 | 3.9  | 13        |
| 118 | The effect of surface coverage on N <sub>2</sub> , NO and N <sub>2</sub> O formation over Pt(111).<br>Physical Chemistry Chemical Physics, 2018, 20, 25314-25323.                                        | 2.8  | 13        |
| 119 | Surface heterogeneity in the formation and decomposition of carbon surface oxides. Proceedings of the Combustion Institute, 1996, 26, 3119-3125.                                                         | 0.3  | 12        |
| 120 | Heterogeneous fixation of N2: Investigation of a novel mechanism for formation of NO. Proceedings of the Combustion Institute, 2009, 32, 1973-1980.                                                      | 3.9  | 12        |
| 121 | Fate of Cu, Cr, and As during the Combustion Stages of CCA-Treated Wood Fuel Particles. Energy &<br>Fuels, 2008, 22, 1589-1597.                                                                          | 5.1  | 11        |
| 122 | Hydrogen from Formic Acid through Its Selective Disproportionation over Sodium Germanate—A<br>Nonâ€Transitionâ€Metal Catalysis System. Angewandte Chemie - International Edition, 2014, 53, 11275-11279. | 13.8 | 11        |
| 123 | Kinetic Insights into the Hydrothermal Decomposition of Dihydroxyacetone: A Combined Experimental and Modeling Study. Industrial & Engineering Chemistry Research, 2015, 54, 8437-8447.                  | 3.7  | 11        |
| 124 | Mechanistic Insights and Kinetic Modeling of Cellobiose Decomposition in Hot Compressed Water.<br>Energy & Fuels, 2017, 31, 2203-2216.                                                                   | 5.1  | 11        |
| 125 | Simulation of microchannel flows using a 3D height function formulation for surface tension modelling. International Communications in Heat and Mass Transfer, 2017, 89, 122-133.                        | 5.6  | 11        |
| 126 | The Role of Atomic Oxygen and Ozone in the Plasma and Post-plasma Catalytic Removal of N2O. Plasma<br>Chemistry and Plasma Processing, 2019, 39, 89-108.                                                 | 2.4  | 11        |

| #   | Article                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Process design and performance of a microstructured convective steam–methane reformer. Catalysis<br>Today, 2011, 178, 34-41.                                                       | 4.4  | 10        |
| 128 | A comparative experimental study of the interactions between platinum and a range of hydrocarbon fuels. Fuel, 2013, 105, 523-534.                                                  | 6.4  | 10        |
| 129 | Confined Ru Nanocatalysts on Surface to Enhance Ammonia Synthesis: An In situ ETEM Study.<br>ChemCatChem, 2021, 13, 534-538.                                                       | 3.7  | 10        |
| 130 | LOCAL FLOW BOILING HEAT TRANSFER COEFFICIENTS IN NARROW CONDUITS. Multiphase Science and Technology, 2000, 12, 16.                                                                 | 0.5  | 10        |
| 131 | Nitric oxide formation during the combustion of coal. Combustion and Flame, 1974, 23, 277-278.                                                                                     | 5.2  | 9         |
| 132 | The reactions of hydrogen and carbon monoxide with surface-bound oxides on carbon. Combustion and Flame, 2000, 120, 515-525.                                                       | 5.2  | 9         |
| 133 | Molecular Dynamics Study of Acid-Catalyzed Hydrolysis of Dimethyl Ether in Aqueous Solution.<br>Journal of Physical Chemistry B, 2011, 115, 8199-8206.                             | 2.6  | 9         |
| 134 | First High Power Test Results for 2.1ÂGHz Superconducting Photonic Band Gap Accelerator Cavities.<br>Physical Review Letters, 2012, 109, 164801.                                   | 7.8  | 9         |
| 135 | Effect of the Local Atomic Ordering on the Stability of β-Spodumene. Inorganic Chemistry, 2016, 55, 6426-6434.                                                                     | 4.0  | 9         |
| 136 | Electrochemical oxidation of nitrogen-rich post-hydrothermal liquefaction wastewater. Algal<br>Research, 2020, 48, 101919.                                                         | 4.6  | 9         |
| 137 | Deportment and management of metals produced during combustion of CCA-treated timbers. Journal of Hazardous Materials, 2007, 139, 500-505.                                         | 12.4 | 8         |
| 138 | Three Dimensional Effects in Taylor Flow in Circular Microchannels. Houille Blanche, 2013, 99, 60-67.                                                                              | 0.3  | 8         |
| 139 | Influence of Tortuous Geometry on the Hydrodynamic Characteristics of Laminar Flow in Microchannels. Chemical Engineering and Technology, 2015, 38, 1406-1415.                     | 1.5  | 8         |
| 140 | Molecular modelling of the decomposition of NH3 over CoO(100). Materials Chemistry and Physics, 2015, 156, 141-149.                                                                | 4.0  | 8         |
| 141 | Heat exchanger specification: Coupling design and surface performance evaluation. Chemical Engineering Research and Design, 2015, 93, 392-401.                                     | 5.6  | 8         |
| 142 | Production of nitrogen compounds from molecular nitrogen in fuel-rich hydrocarbon-air flames.<br>Fuel, 1977, 56, 199-203.                                                          | 6.4  | 7         |
| 143 | Reactions of Hydroxyl on the Topmost Layer of Ag(111):  A Density Functional Theory Study. Journal of Physical Chemistry C, 2007, 111, 1333-1341.                                  | 3.1  | 7         |
| 144 | A general implementation of the H1 boundary condition in CFD simulations of heat transfer in swept passages. International Journal of Heat and Mass Transfer, 2007, 50, 1833-1842. | 4.8  | 7         |

| #   | Article                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Process intensification writ large with microchannel absorption in nitric acid production. Chemical Engineering Science, 2017, 169, 140-150.                                            | 3.8 | 7         |
| 146 | Reaction Analysis of Diaryl Ether Decomposition under Hydrothermal Conditions. Industrial &<br>Engineering Chemistry Research, 2018, 57, 2014-2022.                                     | 3.7 | 6         |
| 147 | ASSESSMENT OF THE SST AND OMEGA-BASED REYNOLDS STRESS MODELS FOR THE PREDICTION OF FLOW AND HEAT TRANSFER IN A SQUARE-SECTION U-BEND. Computational Thermal Sciences, 2009, 1, 385-403. | 0.9 | 6         |
| 148 | Experimental Investigation of Taylor and Intermittent Slug-annular/Annular Flow in Microchannels.<br>Experimental Heat Transfer, 2014, 27, 360-375.                                     | 3.2 | 5         |
| 149 | N2O formation and dissociation during ammonia combustion: A combined DFT and experimental study.<br>Proceedings of the Combustion Institute, 2017, 36, 637-644.                         | 3.9 | 5         |
| 150 | FTIR spectroscopy measurements and CFD simulations of the pollutants arising from unflued combustion in a room. Building and Environment, 2001, 36, 597-603.                            | 6.9 | 4         |
| 151 | Raising gradient limitations in 2.1 GHz superconducting photonic band gap accelerator cavities. Applied<br>Physics Letters, 2014, 104, 242603.                                          | 3.3 | 4         |
| 152 | Hydrothermal Decomposition of Glucose in the Presence of Ammonium. Industrial & Engineering<br>Chemistry Research, 2021, 60, 10129-10138.                                               | 3.7 | 4         |
| 153 | Transport mechanisms in oil shale drying and pyrolysis. Energy & Fuels, 1992, 6, 831-835.                                                                                               | 5.1 | 3         |
| 154 | Comment on Trondheim Paper. Algal Research, 2015, 9, 322.                                                                                                                               | 4.6 | 2         |
| 155 | Active Sites in Soot Growth. Springer Series in Chemical Physics, 1994, , 275-289.                                                                                                      | 0.2 | 2         |
| 156 | Transient phenomena in the steam-carbon reaction. Proceedings of the Combustion Institute, 1988, 21, 203-210.                                                                           | 0.3 | 1         |
| 157 | Cryogenic testing of the 2.1 CHz five-cell superconducting RF cavity with a photonic band gap coupler cell. Applied Physics Letters, 2016, 108, 222603.                                 | 3.3 | 1         |
| 158 | Substituted Aromatic Aldehyde Decomposition under Hydrothermal Conditions. Energy & Fuels, 2022, 36, 5375-5383.                                                                         | 5.1 | 1         |
| 159 | Energy profiles of hydrogen migration in the early stages of lizardite dehydroxylation. Computational<br>Materials Science, 2015, 98, 435-445.                                          | 3.0 | О         |