Xiaofang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3364722/publications.pdf Version: 2024-02-01

XIAOFANC LUL

#	Article	IF	CITATIONS
1	Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy, 2022, 92, 106700.	16.0	108
2	Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell. Nano Research, 2022, 15, 3082-3089.	10.4	31
3	Necklaceâ€Like Sn@C Fiber Selfâ€Supporting Electrode for Highâ€Performance Sodiumâ€Ion Battery. Energy Technology, 2022, 10, .	3.8	7
4	Spatial porosity design of Fe–N–C catalysts for high power density PEM fuel cells and detection of water saturation of the catalyst layer by a microwave method. Journal of Materials Chemistry A, 2022, 10, 7764-7772.	10.3	11
5	Environmentally Tough and Stretchable MXene Organohydrogel with Exceptionally Enhanced Electromagnetic Interference Shielding Performances. Nano-Micro Letters, 2022, 14, 77.	27.0	91
6	Improved interfacial performance of carbon fiber/polyetherimide composites by polyetherimide and modified graphene oxide complex emulsion type sizing agent. High Performance Polymers, 2022, 34, 292-309.	1.8	5
7	lron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nature Communications, 2022, 13, .	12.8	159
8	Non-classical hydrogen storage mechanisms other than chemisorption and physisorption. Applied Physics Reviews, 2022, 9, .	11.3	16
9	Hollow double-shell structured Void@SiO2@Co-C composite for broadband electromagnetic wave absorption. Chemical Engineering Journal, 2021, 417, 128093.	12.7	31
10	Carbon Fibers Embedded with Aligned Magnetic Particles for Efficient Electromagnetic Energy Absorption and Conversion. ACS Applied Materials & Interfaces, 2021, 13, 5266-5274.	8.0	21
11	Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nature Nanotechnology, 2021, 16, 331-336.	31.5	145
12	Parallelâ€Orientationâ€Induced Strong Resonances Enable Ni Submicronâ€Wire Array: an Ultrathin and Ultralight Electromagnetic Wave Absorbing Material. Advanced Electronic Materials, 2021, 7, 2000970.	5.1	10
13	Off/on switchable smart electromagnetic interference shielding aerogel. Matter, 2021, 4, 1735-1747.	10.0	114
14	Hydrogen Passivation of M–N–C (M = Fe, Co) Catalysts for Storage Stability and ORR Activity Improvements. Advanced Materials, 2021, 33, e2103600.	21.0	81
15	Hydrogen Passivation of M–N–C (M = Fe, Co) Catalysts for Storage Stability and ORR Activity Improvements (Adv. Mater. 38/2021). Advanced Materials, 2021, 33, 2170300.	21.0	17
16	lodine cation bridged graphene sheets with strengthened interface combination for electromagnetic wave absorption. Carbon, 2021, 183, 100-107.	10.3	34
17	0D-1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chemical Engineering Journal, 2021, 423, 130132.	12.7	64
18	The Calculated Dielectric Function and Optical Properties of Bimetallic Alloy Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 2721-2727.	3.1	20

XIAOFANG LIU

#	Article	IF	CITATIONS
19	Sodiumphosphinate-assisted synthesis of P-doped FeCo microcubes and their electromagnetic scattering characteristics. Journal of Alloys and Compounds, 2020, 820, 153280.	5.5	9
20	Hierarchical Cobalt Selenides as Highly Efficient Microwave Absorbers with Tunable Frequency Response. ACS Applied Materials & Interfaces, 2020, 12, 1222-1231.	8.0	62
21	Stability of PGM-free fuel cell catalysts: Degradation mechanisms and mitigation strategies. Progress in Natural Science: Materials International, 2020, 30, 721-731.	4.4	34
22	Activating microwave absorption performance by reduced graphene oxide-borophene heterostructure. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106033.	7.6	48
23	Recent Advances in Phosphorusâ€Coordinated Transition Metal Singleâ€Atom Catalysts for Oxygen Reduction Reaction. ChemNanoMat, 2020, 6, 1601-1610.	2.8	14
24	Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Research, 2020, 13, 2063-2071.	10.4	64
25	Carbon black-supported FM–N–C (FM = Fe, Co, and Ni) single-atom catalysts synthesized by the self-catalysis of oxygen-coordinated ferrous metal atoms. Journal of Materials Chemistry A, 2020, 8, 13166-13172.	10.3	27
26	Temperature Impacts on Oxygen Reduction Reaction Measured by the Rotating Disk Electrode Technique. Journal of Physical Chemistry C, 2020, 124, 3069-3079.	3.1	32
27	Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Research, 2020, 13, 447-454.	10.4	77
28	Rare Earth Single-Atom Catalysts for Nitrogen and Carbon Dioxide Reduction. ACS Nano, 2020, 14, 1093-1101.	14.6	198
29	Sequential Synthesis and Activeâ€Site Coordination Principle of Precious Metal Singleâ€Atom Catalysts for Oxygen Reduction Reaction and PEM Fuel Cells. Advanced Energy Materials, 2020, 10, 2000689.	19.5	92
30	Cathode Local Curvature Affects Lithium Peroxide Growth in Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2019, 11, 35264-35269.	8.0	9
31	Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Applied Catalysis B: Environmental, 2019, 256, 117849.	20.2	104
32	Alginate-templated synthesis of CoFe/carbon fiber composite and theÂeffect of hierarchically porous structure on electromagnetic waveÂabsorption performance. Carbon, 2019, 151, 36-45.	10.3	161
33	Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nature Catalysis, 2019, 2, 259-268.	34.4	958
34	Preparation of Fe–N–C catalysts with FeN _x (<i>x</i> = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2019, 7, 26147-26153.	10.3	172
35	A layered double hydroxide-derived exchange spring magnet array grown on graphene and its application as an ultrathin electromagnetic wave absorbing material. Journal of Materials Chemistry C, 2019, 7, 12270-12277.	5.5	42
36	Multifunctional Organic–Inorganic Hybrid Aerogel for Selfâ€Cleaning, Heatâ€Insulating, and Highly Efficient Microwave Absorbing Material. Advanced Functional Materials, 2019, 29, 1807624.	14.9	458

XIAOFANG LIU

#	Article	IF	CITATIONS
37	Synthesis and Active Site Identification of Feâ^'Nâ^'C Singleâ€Atom Catalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 304-315.	3.4	65
38	The Solidâ€Phase Synthesis of an Feâ€Nâ€C Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie, 2018, 130, 1218-1222.	2.0	57
39	A rationally assembled graphene nanoribbon/graphene framework for high volumetric energy and power density Li-ion batteries. Nanoscale, 2018, 10, 7676-7684.	5.6	18
40	Yolk–shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Research, 2018, 11, 4169-4182.	10.4	139
41	Design of dual-frequency electromagnetic wave absorption by interface modulation strategy. Chemical Engineering Journal, 2018, 334, 153-161.	12.7	112
42	The Solidâ€Phase Synthesis of an Feâ€Nâ€C Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2018, 57, 1204-1208.	13.8	293
43	Singleâ€Atom to Singleâ€Atom Grafting of Pt ₁ onto FeN ₄ Center: Pt ₁ @FeNC Multifunctional Electrocatalyst with Significantly Enhanced Properties. Advanced Energy Materials, 2018, 8, 1701345.	19.5	371
44	An Efficient Co/C Microwave Absorber with Tunable Co Nanoparticles Derived from a ZnCo Bimetallic Zeolitic Imidazolate Framework. Particle and Particle Systems Characterization, 2018, 35, 1800107.	2.3	47
45	Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nature Communications, 2018, 9, 3819.	12.8	202
46	Enhanced microwave absorption properties of rod-shaped Fe 2 O 3 /Fe 3 O 4 /MWCNTs composites. Progress in Natural Science: Materials International, 2018, 28, 288-295.	4.4	50
47	Hierarchical NiCo ₂ O ₄ /Co ₃ O ₄ /NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. Journal of Materials Chemistry C, 2017, 5, 3770-3778.	5.5	161
48	Magnetically Aligned Co–C/MWCNTs Composite Derived from MWCNT-Interconnected Zeolitic Imidazolate Frameworks for a Lightweight and Highly Efficient Electromagnetic Wave Absorber. ACS Applied Materials & Interfaces, 2017, 9, 30850-30861.	8.0	282
49	Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chemical Engineering Journal, 2017, 314, 320-327.	12.7	292
50	Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber. ACS Applied Materials & Interfaces, 2016, 8, 34686-34698.	8.0	427
51	Flaky FeSiAl alloy-carbon nanotube composite with tunable electromagnetic properties for microwave absorption. Scientific Reports, 2016, 6, 35377.	3.3	56
52	Clarifying the preferential occupation of Ga ³⁺ ions in YAG:Ce,Ga nanocrystals with various Ga ³⁺ -doping concentrations by nuclear magnetic resonance spectroscopy. Journal of Materials Chemistry C, 2016, 4, 10691-10700.	5.5	20
53	Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles. Scientific Reports, 2016, 6, 22238.	3.3	109
54	Enhanced microwave absorption properties of flake-shaped FePCB metallic glass/graphene composites. Composites Part A: Applied Science and Manufacturing, 2016, 89, 33-39.	7.6	72

XIAOFANG LIU

#	Article	IF	CITATIONS
55	Graphene-enhanced microwave absorption properties of Fe3O4/SiO2 nanorods. Composites Part A: Applied Science and Manufacturing, 2016, 89, 40-46.	7.6	81
56	Study on the phase structures and electrochemical performances of La0.6Gd0.2Mg0.2Ni3.15-xCo0.25Al0.1Mnx (x=0-0.3) alloys as negative electrode material for nickel/metal hydride batteries. Electrochimica Acta, 2015, 158, 89-95.	5.2	16
57	Corrosion Behavior of Detonation Gun Sprayed Al Coating on Sintered NFeB. Journal of Thermal Spray Technology, 2015, 24, 394-400.	3.1	9
58	Iridium Oxide Nanoparticles and Iridium/Iridium Oxide Nanocomposites: Photochemical Fabrication and Application in Catalytic Reduction of 4-Nitrophenol. ACS Applied Materials & Interfaces, 2015, 7, 16738-16749.	8.0	106
59	Flexible nanocomposites with enhanced microwave absorption properties based on Fe ₃ O ₄ /SiO ₂ nanorods and polyvinylidene fluoride. Journal of Materials Chemistry A, 2015, 3, 12197-12204.	10.3	165
60	Stabilization of ultrafine metal nanocatalysts on thin carbon sheets. Nanoscale, 2015, 7, 18320-18326.	5.6	28
61	Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles–poly(vinylidene fluoride) composites. Carbon, 2015, 95, 870-878.	10.3	195
62	Size Influence to the High-Frequency Properties of Granular Magnetite Nanoparticles. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	4
63	Cold-Sprayed Al Coating for Corrosion Protection of Sintered NdFeB. Journal of Thermal Spray Technology, 2014, 23, 456-462.	3.1	32
64	The microstructures and electrochemical performances of La 0.6 Gd 0.2 Mg 0.2 Ni 3.0 Co 0.5â^'x Al x (x) Tj ETQ Journal of Power Sources, 2014, 270, 21-27.	q0 0 0 rgB 7.8	T /Overlock 1 41
65	The structure and multifunctional behaviors of Mn–ZnO/Mn–ZnS nanocomposites. Ceramics International, 2014, 40, 13847-13854.	4.8	4
66	Magnetic and Microwave Absorption Properties of Core/Shell FeCo-Based Nanocomposites Synthesized by a Simple Wet Chemical Method. IEEE Transactions on Magnetics, 2011, 47, 3456-3459.	2.1	6
67	Synthesis and Physical Properties of Mn Doped ZnO Dilute Magnetic Semiconductor Nanostructures. Journal of Superconductivity and Novel Magnetism, 2011, 24, 699-704.	1.8	12
68	Room-Temperature Ferromagnetism in Cobalt and Aluminum Co-Doping Tin Dioxide Diluted Magnetic Semiconductors. Materials Transactions, 2010, 51, 557-560.	1.2	6
69	Room-temperature spin glass and near band edge properties of highly disorder (FeCo)0.03Zn0.97O and (FeCoNi)0.03Zn0.97O nanorods. Journal of Applied Physics, 2010, 107, 043902.	2.5	2
70	Structure and Room-Temperature Ferromagnetism of Zn-Doped SnO ₂ Nanorods Prepared by Solvothermal Method. Journal of Physical Chemistry C, 2010, 114, 4790-4796.	3.1	125
71	Effects of hydroxyls on the structural and room temperature ferromagnetic properties of Co doped SnO2 nanoparticles. Applied Physics A: Materials Science and Processing, 2009, 97, 211-215.	2.3	7
72	Trapping of Ce electrons in band gap and room temperature ferromagnetism of Ce4+ doped ZnO nanowires. Journal of Applied Physics, 2009, 106, .	2.5	71