Domna G Kotsifaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3364657/publications.pdf

Version: 2024-02-01

933447 996975 26 366 10 15 citations g-index h-index papers 29 29 29 323 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The role of temperature-induced effects generated by plasmonic nanostructures on particle delivery and manipulation: a review. Nanophotonics, 2022, 11, 2199-2218.	6.0	15
2	Giant optical forces using an array of asymmetric split-ring plasmonic nanostructures., 2021,,.		1
3	Analysis of small microplastics in coastal surface water samples of the subtropical island of Okinawa, Japan. Science of the Total Environment, 2021, 760, 143927.	8.0	41
4	Raman optical tweezers for microplastic pollution identification in the surface waters of Okinawa. , 2021, , .		0
5	Dynamic multiple nanoparticle trapping using metamaterial plasmonic tweezers. Applied Physics Letters, 2021, 118, .	3 . 3	25
6	Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures. Nanotechnology, 2021, 32, 025507.	2.6	16
7	Detection and analysis of microplastics in the subtropical ocean of Okinawa using micro-Raman Optical Tweezers. , 2021, , .		2
8	Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping. Nano Letters, 2020, 20, 3388-3395.	9.1	52
9	Nanometric plasmonic optical trapping on gold nanostructures. EPJ Applied Physics, 2019, 86, 30501.	0.7	10
10	Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects. Nanophotonics, 2019, 8, 1227-1245.	6.0	101
11	Plasmonic annular aperture arrays for nanoparticle manipulation. , 2019, , .		1
12	Biophotonics for imaging and cell manipulation: quo vadis?. , 2017, , .		1
13	Geometrical effect characterization of femtosecond-laser manufactured glass microfluidic chips based on optical manipulation of submicroparticles. Optical Engineering, 2017, 56, 1.	1.0	3
14	Plasmon enhanced optical tweezers with gold-coated black silicon. Scientific Reports, 2016, 6, 26275.	3.3	34
15	Near-field enhanced optical tweezers utilizing femtosecond-laser nanostructured substrates. Applied Physics Letters, 2015, 107, .	3 . 3	19
16	Efficient and low cost multiple optical trap, based on interference. Optik, 2013, 124, 617-621.	2.9	9
17	Near infrared optical tweezers and nanosecond ablation on yeast and algae cells. Proceedings of SPIE, 2013, , .	0.8	2
18	Optical tweezers with enhanced efficiency based on laser-structured substrates. Applied Physics Letters, 2012, 101, .	3.3	14

#	Article	IF	CITATIONS
19	Micromanipulation of cells and microparticles using optical fibers. , 2011, , .		О
20	Mid-infrared radiation transmission through fluoride glass multimode optical fibers. Optics and Laser Technology, 2011, 43, 1448-1452.	4.6	12
21	Paper surface modification by lasers. , 2010, , .		0
22	Fibers and fiber end sealing caps for Er:YAG laser ablation. , 2010, , .		0
23	Pulsed infrared radiation transmission through hollow silica waveguides. Optics and Laser Technology, 2009, 41, 365-373.	4.6	6
24	Optical tweezers and manipulation of PMMA beads in various conditions., 2009,,.		0
25	Radiation pressure effects in diamond structure and III-V semiconductors. , 2008, , .		0
26	<title>Ultra-violet laser microbeam and optical trapping for cell micromanipulation</title> ., 2007,,.		2