List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3364520/publications.pdf Version: 2024-02-01

		19636	14197
189	17,902	61	128
papers	citations	h-index	g-index
191	191	191	13286
all docs	docs citations	times ranked	citing authors

LILLEN RDAS

#	Article	IF	CITATIONS
1	Photocured Nanocellulose Composites: Recent Advances. ACS Sustainable Chemistry and Engineering, 2022, 10, 3131-3149.	3.2	9
2	Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging. ACS Applied Materials & Interfaces, 2022, 14, 30236-30245.	4.0	17
3	Alkaline treatment combined with enzymatic hydrolysis for efficient cellulose nanofibrils production. Carbohydrate Polymers, 2021, 255, 117383.	5.1	37
4	Film thickness limits of a buckling-based method to determine mechanical properties of polymer coatings. Journal of Colloid and Interface Science, 2021, 582, 227-235.	5.0	8
5	Natural acidic deep eutectic solvent to obtain cellulose nanocrystals using the design of experience approach. Carbohydrate Polymers, 2021, 252, 117136.	5.1	32
6	Hierarchical thermoplastic biocomposites reinforced with flax fibres modified by xyloglucan and cellulose nanocrystals. Carbohydrate Polymers, 2021, 254, 117403.	5.1	11
7	Electrostatic interactions regulate the physical properties of gelatin-cellulose nanocrystals nanocomposite films intended for biodegradable packaging. Food Hydrocolloids, 2021, 113, 106424.	5.6	36
8	Nanocellulose-based materials and composites for electromagnetism and radio frequencies applications. , 2021, , 101-124.		3
9	Short communication on the role of cellulosic fiber-based packaging in reduction of climate change impacts. Carbohydrate Polymers, 2021, 254, 117248.	5.1	15
10	Development of Bio-Inspired Hierarchical Fibres to Tailor the Fibre/Matrix Interphase in (Bio)composites. Polymers, 2021, 13, 804.	2.0	15
11	Rheology of cellulose nanofibrils and silver nanowires for the development of screen-printed antibacterial surfaces. Journal of Materials Science, 2021, 56, 12524-12538.	1.7	9
12	Cellulose fibers deconstruction by twin-screw extrusion with in situ enzymatic hydrolysis via bioextrusion. Bioresource Technology, 2021, 327, 124819.	4.8	18
13	Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS. Carbohydrate Polymers, 2021, 260, 117751.	5.1	31
14	Two-step immobilization of metronidazole prodrug on TEMPO cellulose nanofibrils through thiol-yne click chemistry for in situ controlled release. Carbohydrate Polymers, 2021, 262, 117952.	5.1	9
15	Effect of Tannic Acid and Cellulose Nanocrystals on Antioxidant and Antimicrobial Properties of Gelatin Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 8539-8549.	3.2	57
16	Thick Polyvinyl Alcohol Films Reinforced with Cellulose Nanocrystals for Coating Applications. ACS Applied Nano Materials, 2021, 4, 8015-8025.	2.4	14
17	Valorization of Byproducts of Hemp Multipurpose Crop: Short Non-Aligned Bast Fibers as a Source of Nanocellulose. Molecules, 2021, 26, 4723.	1.7	9
18	Hydrothermal treatments of aqueous cellulose nanocrystal suspensions: effects on structure and surface charge content. Cellulose, 2021, 28, 10239-10257.	2.4	9

#	Article	IF	CITATIONS
19	Upcycling Byproducts from Insect (Fly Larvae and Mealworm) Farming into Chitin Nanofibers and Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 13618-13629.	3.2	13
20	Adsorption characterization of various modified \hat{l}^2 -cyclodextrins onto TEMPO-oxidized cellulose nanofibril membranes and cryogels. Sustainable Chemistry and Pharmacy, 2021, 24, 100523.	1.6	6
21	Lignin Nanoparticle Nucleation and Growth on Cellulose and Chitin Nanofibers. Biomacromolecules, 2021, 22, 880-889.	2.6	19
22	A comparative study of the thermo-mechanical properties of polylactide/cellulose nanocrystal nanocomposites obtained by two surface compatibilization strategies. Materials Today Communications, 2021, 29, 102907.	0.9	4
23	lce-templated freeze-dried cryogels from tunicate cellulose nanocrystals with high specific surface area and anisotropic morphological and mechanical properties. Cellulose, 2020, 27, 233-247.	2.4	38
24	Thermo-compression of cellulose nanofibrils. Cellulose, 2020, 27, 25-40.	2.4	11
25	Cellulose phosphorylation comparison and analysis of phosphorate position on cellulose fibers. Carbohydrate Polymers, 2020, 229, 115294.	5.1	61
26	Highly absorbent cellulose nanofibrils aerogels prepared by supercritical drying. Carbohydrate Polymers, 2020, 229, 115560.	5.1	56
27	Nanocellulose Production by Twin-Screw Extrusion: Simulation of the Screw Profile To Increase the Productivity. ACS Sustainable Chemistry and Engineering, 2020, 8, 50-59.	3.2	34
28	Cellulose Nanocrystals: From Classical Hydrolysis to the Use of Deep Eutectic Solvents. , 2020, , .		2
29	Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging. International Journal of Biological Macromolecules, 2020, 165, 2974-2983.	3.6	48
30	High-Barrier and Antioxidant Poly(lactic acid)/Nanocellulose Multilayered Materials for Packaging. ACS Omega, 2020, 5, 22816-22826.	1.6	20
31	Antibacterial Cellulose Nanopapers via Aminosilane Grafting in Supercritical Carbon Dioxide. ACS Applied Bio Materials, 2020, 3, 8402-8413.	2.3	13
32	Pure cellulose nanofibrils membranes loaded with ciprofloxacin for drug release and antibacterial activity. Cellulose, 2020, 27, 7037-7052.	2.4	8
33	Antimicrobial Cellulose Nanofibril Porous Materials Obtained by Supercritical Impregnation of Thymol. ACS Applied Bio Materials, 2020, 3, 2965-2975.	2.3	32
34	The surface chemistry of a nanocellulose drug carrier unravelled by MAS-DNP. Chemical Science, 2020, 11, 3868-3877.	3.7	32
35	Production of 100% Cellulose Nanofibril Objects Using the Molded Cellulose Process: A Feasibility Study. Industrial & Engineering Chemistry Research, 2020, 59, 7670-7679.	1.8	7
36	Role of solvent exchange in dispersion of cellulose nanocrystals and their esterification using fatty acids as solvents. Cellulose, 2020, 27, 4319-4336.	2.4	18

#	Article	IF	CITATIONS
37	Use of multi-factorial analysis to determine the quality of cellulose nanofibers: effect of nanofibrillation treatment and residual lignin content. Cellulose, 2020, 27, 10689-10705.	2.4	33
38	Cellulose nanofibrils and silver nanowires active coatings for the development of antibacterial packaging surfaces. Carbohydrate Polymers, 2020, 240, 116305.	5.1	26
39	Amidation of TEMPO-oxidized cellulose nanocrystals using aromatic aminated molecules. Colloid and Polymer Science, 2020, 298, 603-617.	1.0	31
40	Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites. Carbohydrate Polymers, 2020, 234, 115899.	5.1	41
41	Feasibility of chitosan crosslinked with genipin as biocoating for cellulose-based materials. Carbohydrate Polymers, 2020, 242, 116429.	5.1	18
42	Production and Mechanical Characterisation of TEMPO-Oxidised Cellulose Nanofibrils/β-Cyclodextrin Films and Cryogels. Molecules, 2020, 25, 2381.	1.7	8
43	Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. Journal of Cleaner Production, 2019, 239, 118083.	4.6	63
44	Impact of sonication on the rheological and colloidal properties of highly concentrated cellulose nanocrystal suspensions. Cellulose, 2019, 26, 7619-7634.	2.4	49
45	Isolation and Characterization of Cellulose Nanofibers from Argentine Tacuara Cane (Guadua) Tj ETQq1 1 0.7843	814 rgBT /	Overlock 10 T
46	Tailoring Rheological Properties of Thermoresponsive Hydrogels through Block Copolymer Adsorption to Cellulose Nanocrystals. Biomacromolecules, 2019, 20, 2545-2556.	2.6	27
47	Production of fire-retardant phosphorylated cellulose fibrils by twin-screw extrusion with low energy consumption. Cellulose, 2019, 26, 5635-5651.	2.4	39
48	Production of cationic nanofibrils of cellulose by twin-screw extrusion. Industrial Crops and Products, 2019, 137, 81-88.	2.5	32
49	Efficiency of Cellulose Carbonates to Produce Cellulose Nanofibers. ACS Sustainable Chemistry and Engineering, 2019, 7, 8155-8167.	3.2	22
50	Cellulose nanofiber (CNF)–sakacinâ€A active material: production, characterization and application in storage trials of smoked salmon. Journal of the Science of Food and Agriculture, 2019, 99, 4731-4738.	1.7	17
51	Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Science, 2019, 88, 241-264.	11.8	447
52	Adsorption versus grafting of poly(N-Isopropylacrylamide) in aqueous conditions on the surface of cellulose nanocrystals. Carbohydrate Polymers, 2019, 210, 100-109.	5.1	26
53	Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose, 2019, 26, 507-528.	2.4	103
54	Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 26-30.	2.3	22

#	Article	IF	CITATIONS
55	Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 2018, 47, 2609-2679.	18.7	690
56	One-step superhydrophobic coating using hydrophobized cellulose nanofibrils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 544, 152-158.	2.3	37
57	Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites. Carbohydrate Polymers, 2018, 183, 267-277.	5.1	46
58	Controlled release of carvacrol and curcumin: bio-based food packaging by synergism action of TEMPO-oxidized cellulose nanocrystals and cyclodextrin. Cellulose, 2018, 25, 1249-1263.	2.4	49
59	Comparison of nanocrystals and nanofibers produced from shrimp shell α-chitin: From energy production to material cytotoxicity and Pickering emulsion properties. Carbohydrate Polymers, 2018, 196, 385-397.	5.1	95
60	Characterization and mechanical properties of ultraviolet stimuliâ€responsive functionalized cellulose nanocrystal alginate composites. Journal of Applied Polymer Science, 2018, 135, 45857.	1.3	11
61	The effect of hydration on the material and mechanical properties of cellulose nanocrystal-alginate composites. Carbohydrate Polymers, 2018, 179, 186-195.	5.1	23
62	Pulp and Paper from Sugarcane: Properties of Rind and Core Fractions. Journal of Renewable Materials, 2018, 6, 160-168.	1.1	7
63	The advantages and challenges raised by the chemistry of aldehydic cellulose nanofibers in medicinal chemistry, 2018, 10, 2679-2683.	1.1	1
64	Impregnation of paper with cellulose nanocrystal reinforced polyvinyl alcohol: synergistic effect of infrared drying and CNC content on crystallinity. Soft Matter, 2018, 14, 9425-9435.	1.2	10
65	Simulation basis for a techno-economic evaluation of chitin nanomaterials production process using Aspen Plus® software. Data in Brief, 2018, 20, 1556-1560.	0.5	7
66	Hybrid nanopaper of cellulose nanofibrils and PET microfibers with high tear and crumpling resistance. Cellulose, 2018, 25, 7127-7142.	2.4	16
67	Combination of twin-screw extruder and homogenizer to produce high-quality nanofibrillated cellulose with low energy consumption. Journal of Materials Science, 2018, 53, 12604-12615.	1.7	31
68	Synthesis of cellulose triacetate-I from microfibrillated date seeds cellulose (Phoenix dactylifera L.). Iranian Polymer Journal (English Edition), 2017, 26, 137-147.	1.3	25
69	Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity. Materials Science and Engineering C, 2017, 75, 760-768.	3.8	65
70	Inkjet printing of nanocellulose–silver ink onto nanocellulose coated cardboard. RSC Advances, 2017, 7, 15372-15381.	1.7	76
71	Polypyrrole/nanocellulose composite for food preservation: Barrier and antioxidant characterization. Food Packaging and Shelf Life, 2017, 12, 1-8.	3.3	45
72	Optimization of preparation of thermally stable cellulose nanofibrils via heatâ€induced conversion of ionic bonds to amide bonds. Journal of Polymer Science Part A, 2017, 55, 1750-1756.	2.5	13

#	Article	IF	CITATIONS
73	Tunable Structural and Mechanical Properties of Cellulose Nanofiber Substrates in Aqueous Conditions for Stem Cell Culture. Biomacromolecules, 2017, 18, 2034-2044.	2.6	33
74	Cellulose nanocrystals as new bio-based coating layer for improving fiber-based mechanical and barrier properties. Journal of Materials Science, 2017, 52, 3048-3061.	1.7	60
75	A new quality index for benchmarking of different cellulose nanofibrils. Carbohydrate Polymers, 2017, 174, 318-329.	5.1	145
76	β-Cyclodextrin-grafted TEMPO-oxidized cellulose nanofibers for sustained release of essential oil. Journal of Materials Science, 2017, 52, 3849-3861.	1.7	37
77	Pilot-Scale Twin Screw Extrusion and Chemical Pretreatment as an Energy-Efficient Method for the Production of Nanofibrillated Cellulose at High Solid Content. ACS Sustainable Chemistry and Engineering, 2017, 5, 6524-6531.	3.2	102
78	Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Industrial Crops and Products, 2017, 108, 257-266.	2.5	68
79	Chemically extracted nanocellulose from sisal fibres by a simple and industrially relevant process. Cellulose, 2017, 24, 107-118.	2.4	47
80	Rheology of cellulose nanofibrils/silver nanowires suspension for the production of transparent and conductive electrodes by screen printing. Applied Surface Science, 2017, 394, 160-168.	3.1	64
81	The nanocellulose biorefinery: woody versus herbaceous agricultural wastes for NCC production. Cellulose, 2017, 24, 693-704.	2.4	31
82	Nanocellulose in functional packaging. , 2017, , 175-213.		12
83	Melt extruded nanocomposites of polybutylene adipateâ€∢i>coâ€ŧerephthalate (PBAT) with phenylbutyl isocyanate modified cellulose nanocrystals. Journal of Applied Polymer Science, 2016, 133, .	1.3	53
84	Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance. Polymer International, 2016, 65, 988-995.	1.6	100
85	Improvement of the Thermal Stability of TEMPOâ€Oxidized Cellulose Nanofibrils by Heatâ€Induced Conversion of Ionic Bonds to Amide Bonds. Macromolecular Rapid Communications, 2016, 37, 1033-1039.	2.0	48
86	Cellulose nanocrystal surface functionalization for the controlled sorption of water and organic vapours. Cellulose, 2016, 23, 2955-2970.	2.4	33
87	Nanocomposites of PBAT and cellulose nanocrystals modified by <i>in situ</i> polymerization and melt extrusion. Polymer Engineering and Science, 2016, 56, 1339-1348.	1.5	37
88	Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Industrial Crops and Products, 2016, 87, 287-296.	2.5	239
89	Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design. Carbohydrate Polymers, 2016, 149, 40-50.	5.1	62
90	Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse. Industrial Crops and Products, 2016, 91, 238-248.	2.5	51

#	Article	IF	CITATIONS
91	Effect of different carboxylic acids in cyclodextrin functionalization of cellulose nanocrystals for prolonged release of carvacrol. Materials Science and Engineering C, 2016, 69, 1018-1025.	3.8	40
92	Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Materials Science and Engineering C, 2016, 69, 977-984.	3.8	51
93	Positive impact of cellulose nanofibrils on silver nanowire coatings for transparent conductive films. Journal of Materials Chemistry C, 2016, 4, 10945-10954.	2.7	43
94	Production of cellulose nanocrystals from sugarcane bagasse fibers and pith. Industrial Crops and Products, 2016, 93, 48-57.	2.5	158
95	Industrial and crop wastes: A new source for nanocellulose biorefinery. Industrial Crops and Products, 2016, 93, 26-38.	2.5	263
96	Use of nanocellulose in printed electronics: a review. Nanoscale, 2016, 8, 13131-13154.	2.8	367
97	A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for highâ€performance polylactide nanocomposites. Journal of Applied Polymer Science, 2016, 133,	1.3	76
98	Nisin anchored cellulose nanofibers for long term antimicrobial active food packaging. RSC Advances, 2016, 6, 12422-12430.	1.7	75
99	Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 2016, 93, 2-25.	2.5	1,186
100	A study of the production of cellulose nanocrystals through subcritical water hydrolysis. Industrial Crops and Products, 2016, 93, 88-95.	2.5	49
101	Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane. Cellulose, 2016, 23, 795-810.	2.4	66
102	Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Composites Part A: Applied Science and Manufacturing, 2016, 83, 80-88.	3.8	73
103	Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydrate Polymers, 2016, 137, 1-8.	5.1	91
104	Nanocomposites with functionalised polysaccharide nanocrystals through aqueous free radical polymerisation promoted by ozonolysis. Carbohydrate Polymers, 2016, 135, 256-266.	5.1	41
105	Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydrate Polymers, 2016, 135, 239-247.	5.1	105
106	Modeling of caffeine release from a cellulosic substrate coated with microfibrillated cellulose. Journal of Controlled Release, 2015, 213, e83-e84.	4.8	3
107	Flexibility and Color Monitoring of Cellulose Nanocrystal Iridescent Solid Films Using Anionic or Neutral Polymers. ACS Applied Materials & Interfaces, 2015, 7, 4010-4018.	4.0	196
108	Antibacterial paperboard packaging using microfibrillated cellulose. Journal of Food Science and Technology, 2015, 52, 5590-5600.	1.4	30

#	Article	IF	CITATIONS
109	Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica. Industrial Crops and Products, 2015, 72, 175-182.	2.5	97
110	Elaboration of cellulose based nanobiocomposite: Effect of cellulose nanocrystals surface treatment and interface "meltingâ€. Industrial Crops and Products, 2015, 72, 7-15.	2.5	17
111	Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release. ACS Applied Materials & Interfaces, 2015, 7, 18076-18085.	4.0	44
112	Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	54
113	Natural copaiba oil as antibacterial agent for bio-based active packaging. Industrial Crops and Products, 2015, 70, 134-141.	2.5	51
114	Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment. Cellulose, 2015, 22, 1227-1241.	2.4	56
115	Subcritical Water: A Method for Green Production of Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2015, 3, 2839-2846.	3.2	134
116	Natural active molecule chemical grafting on the surface of microfibrillated cellulose for fabrication of contact active antimicrobial surfaces. Industrial Crops and Products, 2015, 78, 82-90.	2.5	12
117	Palm rachis microfibrillated cellulose and oxidized-microfibrillated cellulose for improving paper sheets properties of unbeaten softwood and bagasse pulps. Industrial Crops and Products, 2015, 64, 9-15.	2.5	31
118	Engineered pigments based on iridescent cellulose nanocrystal films. Carbohydrate Polymers, 2015, 122, 367-375.	5.1	44
119	Cellulose Nanofibers and Their Use in Paper Industry. Materials and Energy, 2014, , 207-232.	2.5	21
120	All starch nanocomposite coating for barrier material. Journal of Applied Polymer Science, 2014, 131, .	1.3	15
121	Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. Journal of Applied Polymer Science, 2014, 131, .	1.3	54
122	Industrial Point of View of Nanocellulose Materials and Their Possible Applications. Materials and Energy, 2014, , 233-252.	2.5	26
123	Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. Journal of Materials Science, 2014, 49, 2879-2893.	1.7	113
124	Controlled release and long-term antibacterial activity of chlorhexidine digluconate through the nanoporous network of microfibrillated cellulose. Cellulose, 2014, 21, 4429-4442.	2.4	48
125	Green Process for Chemical Functionalization of Nanocellulose with Carboxylic Acids. Biomacromolecules, 2014, 15, 4551-4560.	2.6	150
126	Antibacterial activity and biodegradability assessment of chemically grafted nanofibrillated cellulose. Materials Science and Engineering C, 2014, 45, 477-483.	3.8	41

#	Article	IF	CITATIONS
127	Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Industrial Crops and Products, 2014, 62, 552-559.	2.5	125
128	Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose. Innovative Food Science and Emerging Technologies, 2014, 26, 330-340.	2.7	68
129	Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Industrial Crops and Products, 2014, 55, 102-108.	2.5	59
130	Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydrate Polymers, 2014, 103, 528-537.	5.1	113
131	Controlled release of chlorhexidine digluconate using β-cyclodextrin and microfibrillated cellulose. Colloids and Surfaces B: Biointerfaces, 2014, 121, 196-205.	2.5	37
132	Comparative Sustainability Assessment of Starch Nanocrystals. Journal of Polymers and the Environment, 2013, 21, 71-80.	2.4	27
133	Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. European Polymer Journal, 2013, 49, 3144-3154.	2.6	186
134	Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials. Industrial Crops and Products, 2013, 48, 98-105.	2.5	81
135	Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydrate Polymers, 2013, 91, 711-717.	5.1	137
136	Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres. Cement and Concrete Composites, 2013, 37, 68-75.	4.6	83
137	Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation. Carbohydrate Polymers, 2013, 96, 621-627.	5.1	94
138	Different strategies for obtaining high opacity films of MFC with TiO2 pigments. Cellulose, 2013, 20, 3025-3037.	2.4	30
139	Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology. Carbohydrate Polymers, 2013, 96, 611-620.	5.1	104
140	Nanofibrillated Cellulose Surface Modification: A Review. Materials, 2013, 6, 1745-1766.	1.3	528
141	Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Journal of Membrane Science, 2013, 427, 218-229.	4.1	123
142	Isocyanate-treated cellulose pulp and its effect on the alkali resistance and performance of fiber cement composites. Holzforschung, 2013, 67, 853-861.	0.9	29
143	Cyclodextrin functionalization of several cellulosic substrates for prolonged release of antibacterial agents. Journal of Applied Polymer Science, 2013, 129, 604-613.	1.3	28
144	Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties. Cellulose, 2012, 19, 1957-1973.	2.4	63

#	Article	IF	CITATIONS
145	Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 2012, 90, 735-764.	5.1	1,395
146	Nanofibrillated cellulose surface grafting in ionic liquid. Soft Matter, 2012, 8, 8338.	1.2	72
147	Water Redispersible Dried Nanofibrillated Cellulose by Adding Sodium Chloride. Biomacromolecules, 2012, 13, 4118-4125.	2.6	100
148	Enzymatic Pretreatment for Preparing Starch Nanocrystals. Biomacromolecules, 2012, 13, 132-137.	2.6	119
149	RENEWABLE FIBERS AND BIO-BASED MATERIALS FOR PACKAGING APPLICATIONS – A REVIEW OF RECENT DEVELOPMENTS. BioResources, 2012, 7, 2506-2552.	0.5	216
150	Optimization of the batch preparation of starch nanocrystals to reach daily timeâ€scale. Starch/Staerke, 2012, 64, 489-496.	1.1	31
151	Influence of the Botanic Origin of Starch Nanocrystals on the Morphological and Mechanical Properties of Natural Rubber Nanocomposites. Macromolecular Materials and Engineering, 2012, 297, 969-978.	1.7	32
152	Polycaprolactone/modified bagasse whisker nanocomposites with improved moistureâ€barrier and biodegradability properties. Journal of Applied Polymer Science, 2012, 125, E10.	1.3	35
153	Influence of native starch's properties on starch nanocrystals thermal properties. Carbohydrate Polymers, 2012, 87, 658-666.	5.1	140
154	Impact of bleaching pine fibre on the fibre/cement interface. Journal of Materials Science, 2012, 47, 4167-4177.	1.7	47
155	Renewable fibers and bio-based materials for packaging applications – A review of recent developments. BioResources, 2012, 7, 2506-2552.	0.5	62
156	Evidence of Micro- and Nanoscaled Particles during Starch Nanocrystals Preparation and Their Isolation. Biomacromolecules, 2011, 12, 3039-3046.	2.6	93
157	Recent Advances in Surface Chemical Modification of Cellulose Fibres. Journal of Adhesion Science and Technology, 2011, 25, 661-684.	1.4	36
158	Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). European Polymer Journal, 2011, 47, 2216-2227.	2.6	89
159	HPMC reinforced with different cellulose nano-particles. Carbohydrate Polymers, 2011, 86, 1549-1557.	5.1	135
160	Ceramic membrane filtration for isolating starch nanocrystals. Carbohydrate Polymers, 2011, 86, 1565-1572.	5.1	43
161	Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose, 2011, 18, 57-65.	2.4	110
162	Infra-red assisted sintering of inkjet printed silver tracks on paper substrates. Journal of Nanoparticle Research, 2011, 13, 3815-3823.	0.8	53

#	Article	IF	CITATIONS
163	Influence of botanic origin and amylose content on the morphology of starch nanocrystals. Journal of Nanoparticle Research, 2011, 13, 7193-7208.	0.8	126
164	Extrusion of Nanocelluloseâ€Reinforced Nanocomposites Using the Dispersed Nanoâ€Objects Protective Encapsulation (DOPE) Process. Macromolecular Materials and Engineering, 2011, 296, 984-991.	1.7	29
165	Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydrate Polymers, 2011, 83, 1740-1748.	5.1	334
166	Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydrate Polymers, 2011, 84, 211-215.	5.1	140
167	Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films. Carbon, 2011, 49, 2603-2614.	5.4	81
168	Substrate pre-treatment of flexible material for printed electronics with carbon nanotube based ink. Applied Surface Science, 2011, 257, 3645-3651.	3.1	26
169	Starch Nanoparticles: A Review. Biomacromolecules, 2010, 11, 1139-1153.	2.6	860
170	Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers, 2010, 2, 728-765.	2.0	1,080
171	High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim) Tj ETQq1 1 0.78	4314 rgBT 2.4	Oygrlock 10
172	Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose, 2010, 17, 1147-1158.	2.4	183
173	Surface functionalization of cellulose by grafting oligoether chains. Materials Chemistry and Physics, 2010, 120, 438-445.	2.0	56
174	Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Industrial Crops and Products, 2010, 32, 627-633.	2.5	314
175	Beneficial Effect of Compatibilization on the Aging of Celluloseâ€Reinforced Biopolymer Blends. Macromolecular Materials and Engineering, 2010, 295, 774-781.	1.7	2
176	Grafting of cellulose by fluorine-bearing silane coupling agents. Materials Science and Engineering C, 2010, 30, 343-347.	3.8	39
177	Surface modification of cellulose by PCL grafts. Acta Materialia, 2010, 58, 792-801.	3.8	71
178	Process and recyclability analyses of innovative bio omposite for tray. Packaging Technology and Science, 2010, 23, 177-188.	1.3	4
179	Chemical versus solvent extraction treatment: Comparison and influence on polyester based bio-composite mechanical properties. Composites Part A: Applied Science and Manufacturing, 2010, 41, 703-708.	3.8	15
180	New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate. Langmuir, 2010, 26, 402-411.	1.6	342

#	Article	IF	CITATIONS
181	Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites. Biomacromolecules, 2009, 10, 425-432.	2.6	720
182	Cellulose modified fibres in cement based composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 2046-2053.	3.8	166
183	The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions. Nanotechnology, 2009, 20, 385701.	1.3	54
184	Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. European Polymer Journal, 2008, 44, 4074-4081.	2.6	96
185	PEDOT:PSS coating on specialty papers: Process optimization and effects of surface properties on electrical performances. Progress in Organic Coatings, 2008, 63, 87-91.	1.9	25
186	Oxygen and water vapor permeability of fully substituted long chain cellulose esters (LCCE). Cellulose, 2007, 14, 367-374.	2.4	53
187	NIR Study of Chemically Modified Cellulosic Biopolymers. Molecular Crystals and Liquid Crystals, 2006, 448, 115/[717]-122/[724].	0.4	7
188	Processing Changes of Cement Based Composites Reinforced with Silane and Isocyanate Eucalyptus Modified Fibres. Key Engineering Materials, 0, 517, 437-449.	0.4	3
189	Metal organic framework sensors on flexible substrate for ammonia sensing application at room temperature. Journal of Materials Chemistry C, 0, , .	2.7	8