
Geoff P Horsman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3364380/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	An inventory of early branch points in microbial phosphonate biosynthesis. Microbial Genomics, 2022, 8, .	2.0	4
2	Construction of an Alternative NAD ⁺ De Novo Biosynthesis Pathway. Advanced Science, 2021, 8, 2004632.	11.2	11
3	Initiating polyketide biosynthesis by on-line methyl esterification. Nature Communications, 2021, 12, 4499.	12.8	8
4	Biosynthetic access to the rare antiarose sugar <i>via</i> an unusual reductase-epimerase. Chemical Science, 2020, 11, 3959-3964.	7.4	11
5	Kanamycin-induced production of 2′,3′-cyclic AMP in Escherichia coli. Biochemical and Biophysical Research Communications, 2020, 527, 854-860.	2.1	2
6	The predominance of nucleotidyl activation in bacterial phosphonate biosynthesis. Nature Communications, 2019, 10, 3698.	12.8	16
7	An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters. Nature Communications, 2019, 10, 3665.	12.8	38
8	PokMT1 from the Polyketomycin Biosynthetic Machinery of <i>Streptomyces diastatochromogenes</i> Tü6028 Belongs to the Emerging Family of <i>C</i> -Methyltransferases That Act on CoA-Activated Aromatic Substrates. Biochemistry, 2018, 57, 1003-1011.	2.5	8
9	Whole-Cell Detection of C–P Bonds in Bacteria. Biochemistry, 2017, 56, 5870-5873.	2.5	7
10	Phosphonate Biochemistry. Chemical Reviews, 2017, 117, 5704-5783.	47.7	376
11	Genome mining unveils widespread natural product biosynthetic capacity in human oral microbe Streptococcus mutans. Scientific Reports, 2016, 6, 37479.	3.3	59
12	Non-enzymatic pyridine ring formation in the biosynthesis of the rubrolone tropolone alkaloids. Nature Communications, 2016, 7, 13083.	12.8	50
13	Tropolone Ring Construction in the Biosynthesis of Rubrolone B, a Cationic Tropolone Alkaloid from Endophytic Streptomyces. Organic Letters, 2016, 18, 1254-1257.	4.6	55
14	Evaporative light scattering quantification of natural products possessing a carbon–phosphorus bond. Journal of Antibiotics, 2015, 68, 752-756.	2.0	6
15	Understanding epoxide hydrolase regiospecificity: towards the discovery and design of highly selective biocatalysts (LB133). FASEB Journal, 2014, 28, LB133.	0.5	0
16	Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics. Molecular BioSystems, 2013, 9, 478.	2.9	39
17	Predictive Model for Epoxide Hydrolase-Generated Stereochemistry in the Biosynthesis of Nine-Membered Enediyne Antitumor Antibiotics. Biochemistry, 2013, 52, 5217-5224.	2.5	8
18	Specificity of the Ester Bond Forming Condensation Enzyme SgcC5 in C-1027 Biosynthesis. Organic Letters, 2012, 14, 2300-2303.	4.6	17

GEOFF P HORSMAN

#	Article	IF	CITATIONS
19	Identification of an Acyl-Enzyme Intermediate in a meta-Cleavage Product Hydrolase Reveals the Versatility of the Catalytic Triad. Journal of the American Chemical Society, 2012, 134, 4615-4624.	13.7	31
20	The Catalytic Serine of meta-Cleavage Product Hydrolases Is Activated Differently for C–O Bond Cleavage Than for C–C Bond Cleavage. Biochemistry, 2012, 51, 5831-5840.	2.5	17
21	Improvement of the Enediyne Antitumor Antibiotic C-1027 Production by Manipulating Its Biosynthetic Pathway Regulation in <i>Streptomyces globisporus</i> . Journal of Natural Products, 2011, 74, 420-424.	3.0	36
22	Manipulation of pathway regulation in Streptomyces globisporus for overproduction of the enediyne antitumor antibiotic C-1027. Journal of Antibiotics, 2010, 63, 482-485.	2.0	30
23	Polyketide synthase chemistry does not direct biosynthetic divergence between 9- and 10-membered enediynes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11331-11335.	7.1	51
24	Characterization of a Carbon-Carbon Hydrolase from Mycobacterium tuberculosis Involved in Cholesterol Metabolism. Journal of Biological Chemistry, 2010, 285, 434-443.	3.4	89
25	Characterization of the Epoxide Hydrolase NcsF2 from the Neocarzinostatin Biosynthetic Gene Cluster. Organic Letters, 2010, 12, 3816-3819.	4.6	17
26	Enediyne Antitumor Antibiotic Maduropeptin Biosynthesis Featuring a <i>C</i> -Methyltransferase That Acts on a CoA-Tethered Aromatic Substrate. Journal of the American Chemical Society, 2010, 132, 12534-12536.	13.7	22
27	Characterization of SgcE6, the flavin reductase component supporting FAD-dependent halogenation and hydroxylation in the biosynthesis of the enediyne antitumor antibiotic C-1027. FEMS Microbiology Letters, 2009, 300, 237-241.	1.8	19
28	chapter 5 Iterative Type I Polyketide Synthases for Enediyne Core Biosynthesis. Methods in Enzymology, 2009, 459, 97-112.	1.0	22
29	Characterization of the SgcF Epoxide Hydrolase Supporting an (<i>R</i>)-Vicinal Diol Intermediate for Enediyne Antitumor Antibiotic C-1027 Biosynthesis. Journal of the American Chemical Society, 2009, 131, 16410-16417.	13.7	25
30	The Molecular Basis for Inhibition of BphD, a C-C Bond Hydrolase Involved in Polychlorinated Biphenyls Degradation. Journal of Biological Chemistry, 2007, 282, 36377-36385.	3.4	21
31	Characterization of a C—C Bond Hydrolase from Sphingomonas wittichii RW1 with Novel Specificities towards Polychlorinated Biphenyl Metabolites. Journal of Bacteriology, 2007, 189, 4038-4045.	2.2	36
32	The Tautomeric Half-reaction of BphD, a C-C Bond Hydrolase. Journal of Biological Chemistry, 2007, 282, 19894-19904.	3.4	34
33	A Glutathione <i>S</i> -Transferase Catalyzes the Dehalogenation of Inhibitory Metabolites of Polychlorinated Biphenyls. Journal of Bacteriology, 2006, 188, 4424-4430.	2.2	32
34	Kinetic and Structural Insight into the Mechanism of BphD, a Câ^'C Bond Hydrolase from the Biphenyl Degradation Pathway. Biochemistry, 2006, 45, 11071-11086.	2.5	41
35	Focusing Mutations into the P. fluorescens Esterase Binding Site Increases Enantioselectivity More Effectively than Distant Mutations. Chemistry and Biology, 2005, 12, 45-54.	6.0	115
36	Spectroscopic Studies of the Anaerobic Enzymeâ^'Substrate Complex of Catechol 1,2-Dioxygenase. Journal of the American Chemical Society, 2005, 127, 16882-16891.	13.7	39

GEOFF P HORSMAN

#	Article	IF	CITATIONS
37	Mutations in Distant Residues Moderately Increase the Enantioselectivity of Pseudomonas fluorescens Esterase towards Methyl 3Bromo-2-methylpropanoate and Ethyl 3Phenylbutyrate. Chemistry - A European Journal, 2003, 9, 1933-1939.	3.3	96
38	Mapping the substrate selectivity of new hydrolases using colorimetric screening: lipases from Bacillus thermocatenulatus and Ophiostoma piliferum, esterases from Pseudomonas fluorescens and Streptomyces diastatochromogenes. Tetrahedron: Asymmetry, 2001, 12, 545-556.	1.8	85
39	Phloem Transport of d,I-Glufosinate and AcetyI-I-Glufosinate in Glufosinate-Resistant and -Susceptible Brassica napus. Plant Physiology, 1999, 121, 619-628.	4.8	39
40	Resistance to acetolactate synthase inhibitors and quinclorac in a biotype of false cleavers (<i>Galium spurium</i>). Weed Science, 1998, 46, 390-396.	1.5	69