Spencer L Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3363649/publications.pdf

Version: 2024-02-01

361296 454834 2,379 30 20 30 citations h-index g-index papers 35 35 35 3281 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature, 2013, 503, 115-120.	13.7	362
2	Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nature Biotechnology, 2016, 34, 857-862.	9.4	277
3	Technologies for imaging neural activity in large volumes. Nature Neuroscience, 2016, 19, 1154-1164.	7.1	248
4	Improving data quality in neuronal population recordings. Nature Neuroscience, 2016, 19, 1165-1174.	7.1	210
5	Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nature Neuroscience, 2010, 13, 1144-1149.	7.1	194
6	Experience-dependent binocular competition in the visual cortex begins at eye opening. Nature Neuroscience, 2007, 10, 370-375.	7.1	129
7	Target-Specific Effects of Somatostatin-Expressing Interneurons on Neocortical Visual Processing. Journal of Neuroscience, 2013, 33, 19567-19578.	1.7	110
8	A Preferentially Segregated Recycling Vesicle Pool of Limited Size Supports Neurotransmission in Native Central Synapses. Neuron, 2012, 76, 579-589.	3.8	89
9	Persistent Changes in Spontaneous Firing of Purkinje Neurons Triggered by the Nitric Oxide Signaling Cascade. Journal of Neuroscience, 2003, 23, 367-372.	1.7	78
10	The Beat Goes On: Spontaneous Firing in Mammalian Neuronal Microcircuits. Journal of Neuroscience, 2004, 24, 9215-9219.	1.7	73
11	Synapse-Specific Control of Experience-Dependent Plasticity by Presynaptic NMDA Receptors. Neuron, 2014, 83, 879-893.	3.8	70
12	Stream-dependent development of higher visual cortical areas. Nature Neuroscience, 2017, 20, 200-208.	7.1	64
13	Controlling neural circuits with light. Nature, 2007, 446, 617-619.	13.7	61
14	Maternal Loss of <i>Ube3a </i> Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex. Journal of Neuroscience, 2016, 36, 4888-4894.	1.7	55
15	Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry. Nature Communications, 2021, 12, 6639.	5. 8	54
16	A touchscreen based global motion perception task for mice. Vision Research, 2016, 127, 74-83.	0.7	48
17	Pattern-dependent, simultaneous plasticity differentially transforms the input-output relationship of a feedforward circuit. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14901-14906.	3.3	45
18	Ipsilateral Eye Cortical Maps Are Uniquely Sensitive to Binocular Plasticity. Journal of Neurophysiology, 2009, 101, 855-861.	0.9	32

#	Article	IF	CITATIONS
19	<i>Ube3a</i> loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice. Journal of Neurophysiology, 2017, 118, 634-646.	0.9	27
20	Mice use robust and common strategies to discriminate natural scenes. Scientific Reports, 2018, 8, 1379.	1.6	27
21	Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds. Nature Communications, 2021, 12, 6638.	5.8	21
22	Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report. Neurophotonics, 2022, 9, 013001.	1.7	17
23	An ultra small array of electrodes for stimulating multiple inputs into a single neuron. Journal of Neuroscience Methods, 2004, 133, 109-114.	1.3	14
24	Genotype- and sex-dependent effects of altered Cntnap2 expression on the function of visual cortical areas. Journal of Neurodevelopmental Disorders, 2017, 9, 2.	1.5	10
25	The Refinement of Ipsilateral Eye Retinotopic Maps Is Increased by Removing the Dominant Contralateral Eye in Adult Mice. PLoS ONE, 2010, 5, e9925.	1.1	9
26	Selective representations of texture and motion in mouse higher visual areas. Current Biology, 2022, 32, 2810-2820.e5.	1.8	9
27	Getting it through your thick skull. Nature Neuroscience, 2014, 17, 1018-1019.	7.1	3
28	Dynamic Graph Learning: A Structure-Driven Approach. Mathematics, 2021, 9, 168.	1.1	3
29	The Impact of SST and PV Interneurons on Nonlinear Synaptic Integration in the Neocortex. ENeuro, 2021, 8, ENEURO.0235-21.2021.	0.9	3
30	Deficits in higher visual area representations in a mouse model of Angelman syndrome. Journal of Neurodevelopmental Disorders, 2020, 12, 28.	1.5	2