MarÃ-a José Montes Pita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3363202/publications.pdf

Version: 2024-02-01

30 papers

1,739 citations

20 h-index 30 g-index

30 all docs 30 does citations

times ranked

30

1293 citing authors

#	Article	IF	CITATIONS
1	Thermodynamic cycles for solar thermal power plants: A review. Wiley Interdisciplinary Reviews: Energy and Environment, 2022, 11, e420.	4.1	7
2	A new design of multi-tube receiver for Fresnel technology to increase the thermal performance. Applied Thermal Engineering, 2022, 204, 117970.	6.0	11
3	A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants. Applied Energy, 2020, 263, 114644.	10.1	82
4	Proposal of optimized power cycles for the DEMO power plant (EUROfusion). Fusion Engineering and Design, 2019, 148, 111290.	1.9	2
5	Optical features of linear Fresnel collectors with different secondary reflector technologies. Applied Energy, 2018, 232, 386-397.	10.1	31
6	Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration. Energies, 2018, 11, 1064.	3.1	13
7	Design of an innovative linear Fresnel collector by means of optical performance optimization: A comparison with parabolic trough collectors for different latitudes. Solar Energy, 2017, 153, 459-470.	6.1	25
8	Advances in the linear Fresnel single-tube receivers: Hybrid loops with non-evacuated and evacuated receivers. Energy Conversion and Management, 2017, 149, 318-333.	9.2	36
9	Simulation and comparison between fixed and sliding-pressure strategies in parabolic-trough solar power plants with direct steam generation. Applied Thermal Engineering, 2017, 125, 735-745.	6.0	14
10	Methodology for the thermal characterization of linear Fresnel collectors: Comparative of different configurations and working fluids. AIP Conference Proceedings, 2017, , .	0.4	3
11	Off-design analysis of a Hybrid Rankine-Brayton cycle used as the power block of a solar thermal power plant. Energy, 2017, 134, 369-381.	8.8	20
12	A new approach for the prediction of thermal efficiency in solar receivers. Energy Conversion and Management, 2016, 123, 498-511.	9.2	21
13	Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver. Applied Thermal Engineering, 2016, 104, 162-175.	6.0	41
14	Parabolic trough collector or linear Fresnel collector? A comparison of optical features including thermal quality based on commercial solutions. Solar Energy, 2016, 124, 198-215.	6.1	53
15	Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems. Applied Energy, 2016, 162, 990-1000.	10.1	81
16	A Quest to the Cheapest Method for Electricity Generation in Concentrating Solar Power Plants. Energy Procedia, 2015, 75, 514-520.	1.8	2
17	A Concentrating Solar Power Prototype for validating a new Fresnel-based plant design. Energy Procedia, 2015, 75, 423-429.	1.8	2
18	On the improvement of annual performance of solar thermal power plants through exergy management. International Journal of Energy Research, 2014, 38, 658-673.	4.5	10

#	Article	lF	CITATIONS
19	A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power. Energy, 2014, 73, 192-203.	8.8	75
20	Going further with Fresnel Receiver: New Design Window for Direct Steam Generation. Energy Procedia, 2014, 49, 184-192.	1.8	4
21	Comparison of Heat Transfer Fluid and Direct Steam Generation technologies for Integrated Solar Combined Cycles. Applied Thermal Engineering, 2013, 52, 264-274.	6.0	101
22	Optimization of Brayton cycles for low-to-moderate grade thermal energy sources. Energy, 2013, 55, 403-416.	8.8	30
23	Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers. Applied Thermal Engineering, 2012, 35, 220-232.	6.0	41
24	Solar radiation concentration features in Linear Fresnel Reflector arrays. Energy Conversion and Management, 2012, 54, 133-144.	9.2	109
25	Energy management in solar thermal power plants with double thermal storage system and subdivided solar field. Applied Energy, 2011, 88, 4055-4066.	10.1	46
26	Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors. Applied Energy, 2011, 88, 3228-3238.	10.1	214
27	Thermofluidynamic Model and Comparative Analysis of Parabolic Trough Collectors Using Oil, Water/Steam, or Molten Salt as Heat Transfer Fluids. Journal of Solar Energy Engineering, Transactions of the ASME, 2010, 132, .	1.8	69
28	Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Solar Energy, 2009, 83, 679-689.	6.1	172
29	Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Solar Energy, 2009, 83, 2165-2176.	6.1	394
30	Safety issues of nuclear production of hydrogen. Energy Conversion and Management, 2006, 47, 2732-2739.	9.2	30