Maneesh Jain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3362989/publications.pdf Version: 2024-02-01

MANFESH MIN

#	Article	IF	CITATIONS
1	Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Seminars in Cancer Biology, 2022, 83, 57-76.	9.6	33
2	Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine and Growth Factor Reviews, 2022, 64, 71-83.	7.2	38
3	Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics, 2022, 12, 1030-1060.	10.0	49
4	Disruption of FDPS/Rac1 axis radiosensitizes pancreatic ductal adenocarcinoma by attenuating DNA damage response and immunosuppressive signalling. EBioMedicine, 2022, 75, 103772.	6.1	11
5	GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation. Bone Research, 2022, 10, 6.	11.4	32
6	Substituent Effects Impact Surface Charge and Aggregation of Thiophenol-Labeled Gold Nanoparticles for SERS Biosensors. Biosensors, 2022, 12, 25.	4.7	1
7	Mucin 5AC–Mediated CD44/ITGB1 Clustering Mobilizes Adipose-Derived Mesenchymal Stem Cells to Modulate Pancreatic Cancer Stromal Heterogeneity. Gastroenterology, 2022, 162, 2032-2046.e12.	1.3	11
8	Dynamic Phenotypic Switching and Group Behavior Help Non-Small Cell Lung Cancer Cells Evade Chemotherapy. Biomolecules, 2022, 12, 8.	4.0	13
9	MUC16 Promotes Liver Metastasis of Pancreatic Ductal Adenocarcinoma by Upregulating NRP2-Associated Cell Adhesion. Molecular Cancer Research, 2022, 20, 1208-1221.	3.4	12
10	DNA-gold nanoprobe-based integrated biosensing technology for non-invasive liquid biopsy of serum miRNA: A new frontier in prostate cancer diagnosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 43, 102566.	3.3	7
11	Endothelin-axis antagonism enhances tumor perfusion in pancreatic cancer. Cancer Letters, 2022, 544, 215801.	7.2	3
12	Polyanhydride nanoparticles stabilize pancreatic cancer antigen <scp>MUC4β</scp> . Journal of Biomedical Materials Research - Part A, 2021, 109, 893-902.	4.0	29
13	Selective inhibition of stemness through EGFR/FOXA2/SOX9 axis reduces pancreatic cancer metastasis. Oncogene, 2021, 40, 848-862.	5.9	41
14	The Current Landscape of Antibody-based Therapies in Solid Malignancies. Theranostics, 2021, 11, 1493-1512.	10.0	20
15	Liquid Biopsy for Identification of High-Risk Cystic Lesions of Pancreas. Gastroenterology, 2021, 160, 1016-1018.	1.3	3
16	RNA-based therapies: A cog in the wheel of lung cancer defense. Molecular Cancer, 2021, 20, 54.	19.2	53
17	Evaluation of Somatic Mutations in Solid Metastatic Pan-Cancer Patients. Cancers, 2021, 13, 2776.	3.7	9
18	Pancreatic Tumor Microenvironment Factor Promotes Cancer Stemness via SPP1–CD44 Axis. Gastroenterology, 2021, 161, 1998-2013.e7.	1.3	95

MANEESH JAIN

#	Article	IF	CITATIONS
19	Modeling pancreatic cancer in mice for experimental therapeutics. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188554.	7.4	33
20	Differential gene expression-based connectivity mapping identified novel drug candidate and improved Temozolomide efficacy for Glioblastoma. Journal of Experimental and Clinical Cancer Research, 2021, 40, 335.	8.6	8
21	Characterization of recombinant β subunit of human MUC4 mucin (rMUC4β). Scientific Reports, 2021, 11, 23730.	3.3	4
22	Radiomics in stratification of pancreatic cystic lesions: Machine learning in action. Cancer Letters, 2020, 469, 228-237.	7.2	70
23	A phase I study of weekly doxorubicin and oral topotecan for patients with relapsed or refractory small cell lung cancer (SCLC): A Fred and Pamela Buffet Cancer Center Clinical Trials Network study. Cancer Treatment and Research Communications, 2020, 22, 100162.	1.7	2
24	Elevating pancreatic cystic lesion stratification: Current and future pancreatic cancer biomarker(s). Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188318.	7.4	28
25	Irreversible and sustained upregulation of endothelin axis during oncogene-associated pancreatic inflammation and cancer. Neoplasia, 2020, 22, 98-110.	5.3	16
26	Blocking c-MET/ERBB1 Axis Prevents Brain Metastasis in ERBB2+ Breast Cancer. Cancers, 2020, 12, 2838.	3.7	5
27	CXCR2 signaling promotes secretory cancerâ€associated fibroblasts in pancreatic ductal adenocarcinoma. FASEB Journal, 2020, 34, 9405-9418.	0.5	43
28	Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 2020, 182, 1044-1061.e18.	28.9	691
29	MUCIN-4 (MUC4) is a novel tumor antigen in pancreatic cancer immunotherapy. Seminars in Immunology, 2020, 47, 101391.	5.6	41
30	Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188359.	7.4	53
31	Afatinib and Temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in glioblastoma cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 266.	8.6	81
32	Cancer-associated mucins: role in immune modulation and metastasis. Cancer and Metastasis Reviews, 2019, 38, 223-236.	5.9	152
33	Label-free characterization of exosome via surface enhanced Raman spectroscopy for the early detection of pancreatic cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 88-96.	3.3	116
34	Amphiphilic polyanhydride-based recombinant MUC4Î ² -nanovaccine activates dendritic cells. Genes and Cancer, 2019, 10, 52-62.	1.9	23
35	MUC4 interacts and stabilize EGFR1 in a ligandâ€dependent manner leading to sustained oncogenic signaling. FASEB Journal, 2019, 33, 631.3.	0.5	0
36	Emerging trends in the immunotherapy of pancreatic cancer. Cancer Letters, 2018, 417, 35-46.	7.2	77

Maneesh Jain

#	Article	IF	CITATIONS
37	Development and characterization of carboxy-terminus specific monoclonal antibodies for understanding MUC16 cleavage in human ovarian cancer. PLoS ONE, 2018, 13, e0193907.	2.5	21
38	MUC16 as a novel target for cancer therapy. Expert Opinion on Therapeutic Targets, 2018, 22, 675-686.	3.4	142
39	Desmoplasia in pancreatic ductal adenocarcinoma: insight into pathological function and therapeutic potential. Genes and Cancer, 2018, 9, 78-86.	1.9	75
40	MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma. Expert Opinion on Therapeutic Targets, 2017, 21, 657-669.	3.4	61
41	A Combination of MUC5AC and CA19-9 Improves the Diagnosis of Pancreatic Cancer: A Multicenter Study. American Journal of Gastroenterology, 2017, 112, 172-183.	0.4	109
42	Mucins and associated O-glycans based immunoprofile for stratification of colorectal polyps: clinical implication for improved colon surveillance. Oncotarget, 2017, 8, 7025-7038.	1.8	19
43	Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem cells. Oncotarget, 2017, 8, 20961-20973.	1.8	41
44	Polyplex-mediated inhibition of chemokine receptor CXCR4 and chromatin-remodeling enzyme NCOA3 impedes pancreatic cancer progression and metastasis. Biomaterials, 2016, 101, 108-120.	11.4	26
45	Mucins and associated glycan signatures in colon adenoma–carcinoma sequence: Prospective pathological implication(s) for early diagnosis of colon cancer. Cancer Letters, 2016, 374, 304-314.	7.2	68
46	Biomarkers for glioblastoma: MMP2 and NGAL. Journal of Clinical Oncology, 2016, 34, e13516-e13516.	1.6	6
47	Emerging potential of natural products for targeting mucins for therapy against inflammation and cancer. Cancer Treatment Reviews, 2015, 41, 277-288.	7.7	24
48	Genetically engineered mucin mouse models for inflammation and cancer. Cancer and Metastasis Reviews, 2015, 34, 593-609.	5.9	23
49	Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biology, 2015, 17, 816-826.	10.3	2,064
50	Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527, 329-335.	27.8	3,688
51	Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 211-225.	7.4	58
52	Nano-immunoassay with improved performance for detection of cancer biomarkers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 167-173.	3.3	38
53	Novel HER3/MUC4 oncogenic signaling aggravates the tumorigenic phenotypes of pancreatic cancer cells. Oncotarget, 2015, 6, 21085-21099.	1.8	31
54	Emerging Trends for Radioimmunotherapy in Solid Tumors. Cancer Biotherapy and Radiopharmaceuticals, 2013, 28, 639-650.	1.0	14

Maneesh Jain

#	Article	IF	CITATIONS
55	Pathobiological Implications of MUC4 in Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2013, 8, 398-407.	1.1	38
56	MUC4 Overexpression Augments Cell Migration and Metastasis through EGFR Family Proteins in Triple Negative Breast Cancer Cells. PLoS ONE, 2013, 8, e54455.	2.5	60
57	Monoclonal Antibodies Recognizing the Non-Tandem Repeat Regions of the Human Mucin MUC4 in Pancreatic Cancer. PLoS ONE, 2011, 6, e23344.	2.5	15
58	Optimization of Radioimmunotherapy of Solid Tumors: Biological Impediments and Their Modulation. Clinical Cancer Research, 2007, 13, 1374-1382.	7.0	86
59	Engineering antibodies for clinical applications. Trends in Biotechnology, 2007, 25, 307-316.	9.3	117
60	Penetratin Improves Tumor Retention of Single-Chain Antibodies: A Novel Step toward Optimization of Radioimmunotherapy of Solid Tumors. Cancer Research, 2005, 65, 7840-7846.	0.9	83
61	Generation and Characterization of Anti-MUC4 Monoclonal Antibodies Reactive with Normal and Cancer Cells in Humans. Journal of Histochemistry and Cytochemistry, 2004, 52, 253-261.	2.5	76
62	Genetically engineered antibody fragments and PET imaging: a new era of radioimmunodiagnosis. Journal of Nuclear Medicine, 2003, 44, 1970-2.	5.0	9