
Stefan Frank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/336291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy, 2018, 3, 515-527.	39.5	733
2	Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 2019, 12, 1443-1475.	3.6	496
3	Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3709-3714.	7.1	407
4	Contribution of the land sector to a 1.5 °C world. Nature Climate Change, 2019, 9, 817-828.	18.8	301
5	Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nature Communications, 2020, 11, 2096.	12.8	241
6	Can N ₂ O emissions offset the benefits from soil organic carbon storage?. Global Change Biology, 2021, 27, 237-256.	9.5	174
7	Reducing greenhouse gas emissions in agriculture without compromising food security?. Environmental Research Letters, 2017, 12, 105004.	5.2	172
8	Assessing the land resource–food price nexus of the Sustainable Development Goals. Science Advances, 2016, 2, e1501499.	10.3	162
9	A multi-model assessment of food security implications of climate change mitigation. Nature Sustainability, 2019, 2, 386-396.	23.7	152
10	Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change, 2019, 9, 66-72.	18.8	139
11	How to spend a dwindling greenhouse gas budget. Nature Climate Change, 2018, 8, 7-10.	18.8	119
12	Global hunger and climate change adaptation through international trade. Nature Climate Change, 2020, 10, 829-835.	18.8	117
13	Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Management, 2019, 10, 567-587.	2.4	113
14	Global bioenergy scenarios – Future forest development, land-use implications, and trade-offs. Biomass and Bioenergy, 2013, 57, 86-96.	5.7	110
15	Cost and attainability of meeting stringent climate targets without overshoot. Nature Climate Change, 2021, 11, 1063-1069.	18.8	102
16	A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renewable and Sustainable Energy Reviews, 2021, 137, 110602.	16.4	89
17	Land-based climate change mitigation measures can affect agricultural markets and food security. Nature Food, 2022, 3, 110-121.	14.0	61
18	Structural change as a key component for agricultural non-CO2 mitigation efforts. Nature Communications, 2018, 9, 1060.	12.8	52

Stefan Frank

#	Article	IF	CITATIONS
19	Tackling food consumption inequality to fight hunger without pressuring the environment. Nature Sustainability, 2019, 2, 826-833.	23.7	49
20	Shared socio-economic pathways and their implications for global materials use. Resources, Conservation and Recycling, 2020, 160, 104866.	10.8	42
21	Net zero-emission pathways reduce the physical and economic risks of climate change. Nature Climate Change, 2021, 11, 1070-1076.	18.8	39
22	Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Climatic Change, 2020, 163, 1569-1586.	3.6	38
23	The dynamic soil organic carbon mitigation potential of European cropland. Global Environmental Change, 2015, 35, 269-278.	7.8	34
24	Food security under high bioenergy demand toward long-term climate goals. Climatic Change, 2020, 163, 1587-1601.	3.6	33
25	Land-based climate change mitigation potentials within the agenda for sustainable development. Environmental Research Letters, 2021, 16, 024006.	5.2	32
26	How effective are the sustainability criteria accompanying the European Union 2020 biofuel targets?. GCB Bioenergy, 2013, 5, 306-314.	5.6	31
27	Dynamics of the land use, land use change, and forestry sink in the European Union: the impacts of energy and climate targets for 2030. Climatic Change, 2016, 138, 253-266.	3.6	29
28	Land-based implications of early climate actions without global net-negative emissions. Nature Sustainability, 2021, 4, 1052-1059.	23.7	27
29	Global food markets, trade and the cost of climate change adaptation. Food Security, 2014, 6, 29-44.	5.3	26
30	Paying the price for environmentally sustainable and healthy EU diets. Global Food Security, 2021, 28, 100437.	8.1	24
31	Model-based assessments for long-term climate strategies. Nature Climate Change, 2019, 9, 345-347.	18.8	22
32	Short- and long-term warming effects of methane may affect the cost-effectiveness of mitigation policies and benefits of low-meat diets. Nature Food, 2021, 2, 970-980.	14.0	21
33	Future CHG emissions more efficiently controlled by land-use policies than by bioenergy sustainability criteria. Biofuels, Bioproducts and Biorefining, 2013, 7, 115-125.	3.7	19
34	Impacts of global climate change mitigation scenarios on forests and harvesting in Sweden. Canadian Journal of Forest Research, 2016, 46, 1427-1438.	1.7	19
35	Greenhouse gas abatement strategies and costs in French dairy production. Journal of Cleaner Production, 2019, 236, 117589.	9.3	17
36	Forest Resource Projection Tools at the European Level. Managing Forest Ecosystems, 2017, , 49-68.	0.9	12

Stefan Frank

#	Article	IF	CITATIONS
37	Global biomass supply modeling for long-run management of the climate system. Climatic Change, 2022, 172, .	3.6	8
38	A Risk-Informed Decision-Making Framework for Climate Change Adaptation through Robust Land Use and Irrigation Planning. Sustainability, 2022, 14, 1430.	3.2	5
39	How much multilateralism do we need? Effectiveness of unilateral agricultural mitigation efforts in the global context. Environmental Research Letters, 2021, 16, 104038.	5.2	4